A Hardware Architecture for Better Portable Graphics (BPG) Compression Encoder

U. Albalawi¹, S. P. Mohanty², and E. Kougianos³

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3}

Email: UmarAlbalawi@my.unt.edu¹, saraju.mohanty@unt.edu² and elias.kougianos@unt.edu³

Presented by: Prabha Sundaravadivel

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.

December 23, 2015

Outline of the talk

- Introduction and Motivation
- Novel Contributions
- A Simplified Analysis of the BPG algorithm.
- Proposed Hardware Architecture for the BPG Encoder
- Proposed BPG Encoder: Simulink® based simulations
- Conclusions

Introduction

☐ What is Better Portable Graphics (BPG) compression?

BPG is a new image format offering several advantages over the JPEG format. It achieves a higher compression ratio with smaller size than JPEG for similar quality.

- □ Since its introduction in 1987, the Joint Photographic Experts Group (JPEG) graphics format has been the *de facto* choice for image compression. However, the new compression technique BPG outperforms JPEG in terms of compression quality and size of the compressed file.
- ☐ The reference BPG image library and utilities (libbpg) can be divided into four functions: [1]
- 1) BPG encoder
- 2) BPG decoder,
- 3) Javascript decoder.
- 4) BPG decoding.

[1] F. Bellard, "The BPG Image Format," http://bellard.org/bpg/, last Accessed on 09/20/2015.

Introduction

□ Why BPG compression instead of JPEG?

Attributes that differentiate BPG from JPEG and make it an excellent choice include the following:

- 1) Meeting modern display requirements: high quality and lower size.
- 2) BPG compression is based on the High Efficiency Video Coding (HEVC), which is considered a major advance in compression techniques.
- 3) Supported by most web browsers with a small Javascript decoder.

Introduction

- **□** Why BPG compression Not JPEG?
- 4) It is open source.
- 5) BPG is close in spirit to JPEG and can offer lossless compression in the digital domain.
- 6) Different chroma formats supported include grayscale, RGB, YCgCo, YCbCr, Non-premultiplied alpha, and Premultiplied alpha.
- 7) BPG uses a range of metadata for efficient conversion including EXIF, ICC profile, and XMP.

Novel Contributions of This Paper

- **☐** The novel contributions of this paper include the following:
- 1. The first-ever architecture for hardware BPG compression.
- 2. A Simplified Analysis of the BPG algorithm.
- 3. A Simulink®—based prototype of the algorithm implementation.
- 4. Experimental analysis and comparison of the proposed architecture versus JPEG.

Novel Contributions of This Paper

☐ The advantages of hardware versus software implementation:

- 1. Real-time image encoding with minimal hardware.
- 2. Significant reduction in power usage.
- 3. Dedicated circuity that does not slow down the host.
- 4. Hardware is less susceptible to malicious software such as viruses, Trojans.
- 5. Performance is higher since the hardware can be custom-built.
- 6. Hardware-based BPG can be integrated with multimedia creating or processing components e.g. GPU

BPG Image Compression Algorithm

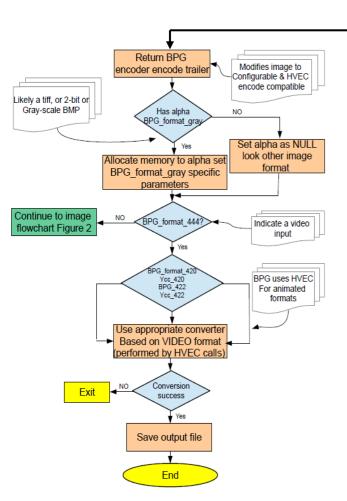


Fig. 3: BPG Video Encoder Algorithm.

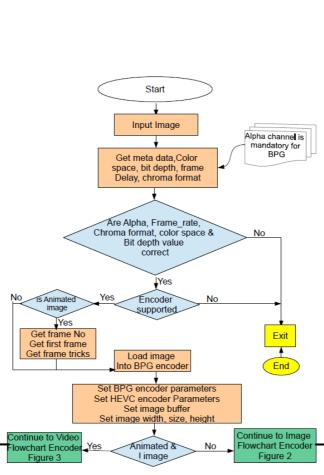
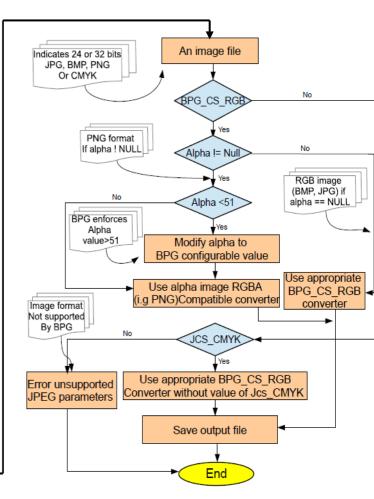
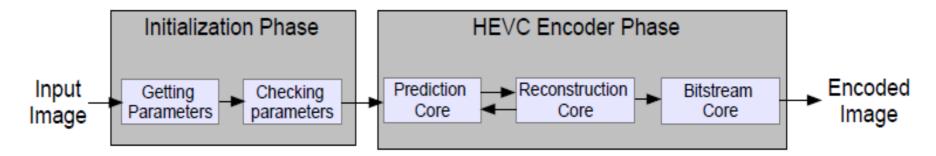


Fig. 1: BPG Encoder Algorithm.




Fig. 2: BPG Image Encoder Algorithm.

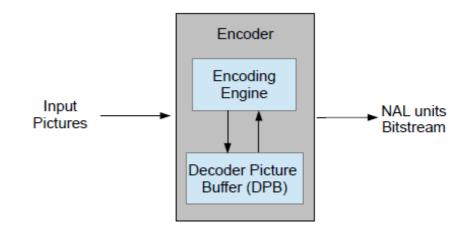
A. Initialization Phase:

B. HEVC Encoder Phase:

BPG Encoder Block Diagram

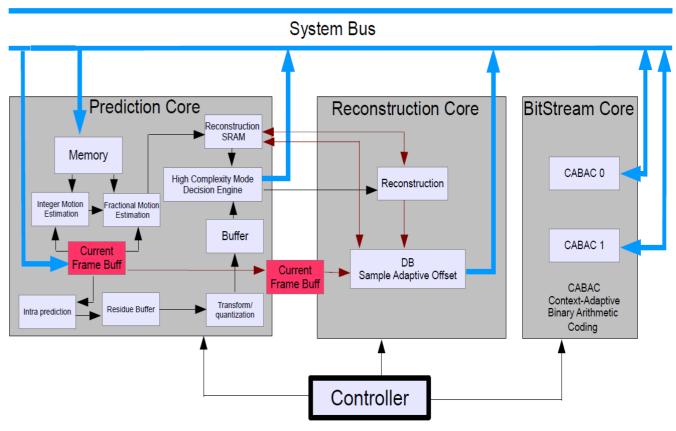
A.Initialization Phase:

```
Algorithm 1 Initialization phase algorithm
```


- 1: $Parameters \leftarrow \{PixelDpth, ColorSpace, AlphaChannel\}$
- 2: $Resolution \leftarrow \{pixels/inch\}$
- 3: $Bitdepth \leftarrow \{MateData/ImageSize\}$
- 4: while Lenght > 2 do
- 5: **if** Bitdepth = 8 **then**
- 6: $AlphaChannel \leftarrow \emptyset$
- 7: PRINT "ERROR: BitDepth is not supported"
- 8: **if** MetaDatacolor < 1 **then**
- 9: PRINT "ERROR: ColorSpace is not supported"
- 10: PRINT "Bit Depth is 8 and correct color type"
- 11: PRINT "Image accepted for BPG compression"
- 12: **end**

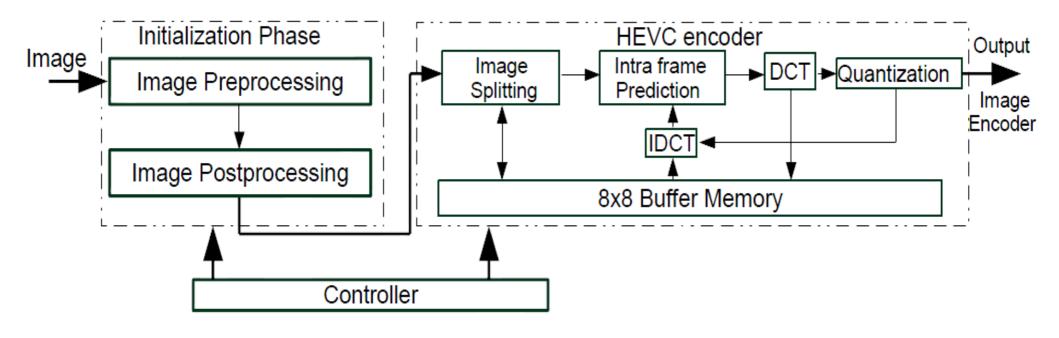
B. HEVC Encoder Phase:

- ✓ HEVC offers high coding efficiency because of the intelligent approach that is used to reduce the area (pixels) that is encoded.
- ✓HEVC uses an 8×8 block, and DCT or DST as the transformation mechanism in the frequency domain.
- ✓ The encoder stores pictures in the Decoder Picture Buffer (DPB).


HEVC Encoder Block Diagram

B. HEVC Encoder Phase:

- 1. Prediction Core.
- 2. Reconstruction Core.
- 3. Bitstream core.



HEVC Encoder System

System Level Architecture of the Proposed Algorithm

System Level Architecture of the Proposed Algorithm

Simulink® Based Modeling

- ❖ The proposed algorithm is prototyped in Simulink ®
- ❖ The methodology that is used to represent the high level system modeling is bottom-up.
- ❖ The first step is focused on building functional units; the next step is to integrate these units into subsystems.
- *Finally, verifying and testing overall system functionality.

(a) JPEG Image

(b) BPG Image

Compression of Bear Image (256×256)

(a) JPEG Image

(b) BPG Image

Compression of Ice Climb Image (512×512)

(a) JPEG Image

(b) BPG Image

Compression of Lena Image (512×512)



(a) JPEG Image

(b) BPG Image

Compression of Wallpaper Image (128×128)

- Metrics to describe the type and amount of degradation in reconstructed compressed images:
- 1. Root Mean Squared Error (RMSE).
- 2. Peak Signal to Noise Ratio (PSNR).

$$RMSE = \frac{1}{\sqrt{mn}} \sum_{i=1}^{m-1} \sum_{n=1}^{N} ||(O(i,j) - O'(i,j))||^2$$
 (1)

$$PSNR = 10\log\left(\frac{(2^n - 1)^2}{MSE}\right) = 10\log\left(\frac{255^2}{MSE}\right) (2)$$

Table I: Quality Metrics for Compression Technique and Test Image

Test Image	Code	Size (KB)	RMSE	PSNR
Bear Image	JPEG (input image)	19.4	0.015	84.02
	BPG image	15.8	0.012	84.82
IceClimb Image	JPEG (input image)	85.3	0.012	86.035
	BPG image	78.4	0.010	86.11
Lena Image	JPEG (input image)	29.3	0.023	80.6
	BPG image	26.4	0.20	80.75
Wallpaper Image	JPEG (input image)	6.2	0.022	81.1
	BPG image	4.41	0.19	81.22

Conclusions

The first-ever hardware architecture to perform BPG compression encoder in images is presented.

The proposed architecture is prototyped in Simulink ®.

The experimental results are compared with existing JPEG techniques in terms of quality and size and indicate the superior compression characteristics of BPG.

