Exploring Kriging for Fast and Accurate Design Optimization of Nanoscale Analog Circuits

NanoSystem Design Laboratory (http://nsdl.cse.unt.edu), University of North Texas, USA. Email: saraju.mohanty@unt.edu

Abstract

The increasing complexity of modern electronic devices driven by consumer demand and technological advancements presents significant challenges for designers. Reduced feature sizes and increased capabilities lead to more complex designs as more subcircuit systems are packed into a single chip. Traditional synthesis methods which involve CAD tools for accurate simulation are computationally time expensive and even become infeasible especially in designs using 65nm technology and beyond due to increased design factors and the exponentially increasing design space. Current design methods aim to explore techniques that produce optimal designs while reducing the design effort of designers. Metamodeling techniques have been used in this light to reduce the cost of manual iterative circuit sizing during synthesis. Existing metamodeling techniques however are unable to capture the effects of process variation which are dominant in deep nanometer regions. This work explores Kriging techniques for fast and accurate design optimization of nanoscale analog circuits. An illustration with a 180nm PLL design shows a reduction in power dissipation by 79% while reducing simulation time by about 25x.

Kriging Bootstrapped ANN Concept

- Kriging techniques take into account the correlation effects between design parameters and can thus better capture the effects of process variation during the design process.
- Kriging weighting calculations are potentially time consuming for high dimensional designs.

Kriging Based ANN Metamodel Generation Flow

- ANN techniques produce accurate models but do not model process variation effects.
- The proposed technique combines Kriging and ANN by using intermediate sample (bootstrapped) data points to train the ANN model.

Oghenekarho Okobiah, Saraju P. Mohanty, Elias Kougianos

Metamodel Accuracy and Comparison

Statistical Analysis for Accuracy of Generated Metamodels of the PLL

		Circuit	Kriging-ANN		Kriging		ANN	
		Value	Value	error (%)	Value	error (%)	Value	error (%)
P_{PLL}	Mean	2.48 mW	2.40 mW	3.22	2.50 mW	0.81	2.50 mW	0.81
	STD	0.42 mW	0.34 mW	19.05	0.51 mW	21.43	0.69 mW	64.28
F_{PLL}	Mean	2.66 GHz	2.51 GHz	5.64	2.66 GHz	0.11	2.74 GHz	5.38
	STD	10.95 MHz	41.93 MHz	282.92	3.72 MHz	66.03	51.9 MHz	373.97
Lck_{PLL}	Mean	5.51 µs	$5.11 \mu s$	7.26	5.51 µs	0.07	5.20 µs	5.63
	STD	$0.72 \ \mu s$	$0.44 \ \mu s$	38.88	.58 ns	10.25	$1.01 \ \mu s$	40.27
J_{PLL}	Mean	16.80 ns	14.69ns	10.25	16.78ns	0.12	17.91 ns	6.61
	STD	1.32 ps	4.50 ps	240.91	0.68ps	48.48	19.17 ps	1352.22

Comparison with Related Metamodel Designs

		Test	
Research	Metamodel	Circuit	Accuracy
Garitselov [28]	Polynomial	PLL	0.157
V11 [0]	Kriging	RO	0.5325 (MSE)
Iu [9]	Kinging	LC-VCO	0.5325 (MSE)
Kuo [7]	Polynomial	PLL	2.0×10^{-4}
This Paper	Kriging-ANN	PLL	2.51×10^{-6}

Monte-Carlo Time Analysis					
Model	Kriging-ANN	Kriging	ANN		
Time	19 s	468 s	19 s		
Speedup	24.63×	1	24.63×		

High Level Design Flow

Optimization Results

Final Optimization Results for PLL

Metric	Power (mW)	Locking Time (ns)	A
Baseline Design	8.27	2.74	5
Optimal Optimal	1.67	2.63	5
Reduction	79 %	4 %	

Conclusion

- metamodeling design novel • A methodology combining Kriging and Artificial Neural Networks to create process aware metamodels is presented.
- The proposed technique shows improved process awareness over conventional ANN models and achieves power consumption improvement of 79% and Monte Carlo analysis time speed up of 25x over Kriging models.
- Future work will explore techniques for increasing nominal accuracy.

