A Low Latency Scalable 3D NoC Using BFT Topology with Table Based Uniform Routing
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PROBLEM DESCRIPTION PROPOSED SOLUTION

% Due to the close proximity of layers in 3D NoC structure the signals travelling in the vertical
(inter-layer) direction is much faster than the horizontal (intralayer) in their 2D counterpart.

% An inter-layer connection requires the addition of two more links (up and down) to each
router that leads to an increase in complexity as well as the blocking probability inside the
router.

% Being a multi-hop communication fabric, the traditional NoC routers can not be placed on the
vertical path in a NoC as the multi-hop delay and the router delay would overshadow the ultra

fast propagation time. —— | ]

O Thus it is desirable to have single hop communication , = - =" - T
among the layers because of the short distance between ' - ~
them.

O Also, the number of vertical pillars should be kept low to
reduce the manufacturing cost of a 3D NoC. =

v o

O It induces a new problem for the IP blocks with close
vicinity to the pillar nodes on a layer giving more
advantage in case of inter layer communication than
those that are at relatively distant position from the
pillar nodes.

3 3 Connection Structure in a typical 3D Mesh topology.
Objective

To propose a novel 3D NoC topology with proper routing method that can address ‘ d
all the above issues.

» Overall architecture of a layer in the proposed design of 3D NoC based on Butterfly Fat Tree topology. Four BFTs are connected d m e

Logical diagram of four connected Butterfly Fat Trees.

together having four root nodes each (colored red, orange, blue, and green).
> Root nodes with same color are connected together to form complete graph. Reason behind connecting the root nodes in

the above manner is to reduce the network latency in terms of hop count. Connectivity between border and root routers. Each of (a),(b),(c), and

» For inter layer communication DTDMA pillars are used that eliminate transactional character commonly associated with (d) is a four root level router, each pertaining to a particular BFT. (e) Border
buses [8], [9] by employing a dynamic bus arbitration (thus close to 100 % bandwidth efficient). Single-hop communication routers of a floor, each of which is dedicated to a particular BFT.

and transaction-less arbitrations allow for low and predictable latencies. Furthermore, hybridization of NoC router with
bus architectures requires only one additional link (in the place of two) on NoC router.

> The circular DTDMA pillar node is shown in the center of the floor plan picture of a single BFT. It is connected to a special router Floor plan of a complete NoC layer comprising four BFTs as the
called as border router (responsible for regulating traffic across different layers of the chip). This router is the gateway for inter localities of their respective pillar nodes.
layer communication.

DIEFERENT ROUTING SCOPES l ROUTING ALGORITHMS FOR DIFFERENT SCOPES
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v Layer Scope: A 3D NoC chip consists of several layers. Pl (e i e et ohysical channct end Forward _Border Route( )
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The main routing methodology. Forwarding technique of a root router. Forwarding technique of a border router.
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Rate Rate O Proposed BFT topology can withstand heavy workload while still
| maintaining low latency, and the acceptance rate also increases
Simulation Results for Mesh and BET Mesh 30 NIL 43-89 NIL with increasing injection rate. This is because of the uniform
and load balancing connectivity of BFT where we have more
verage Latency Comparison verage Acceptance Rate Comparison Minimum Acceptance Rate Comparison . . . )
preseetstertone R ,, ,, Average Hop Count Comparison than one path between a pair of source and destination but
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with same hop count. On the other hand, all other topological

Torus 13 6-9 83-88 6-13 designs have failed to balance the load and sometimes crash.
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Butterfly NIL NIL 46-96 NIL then with this design we can achieve a really effective NoC
system for interactive applications with threading capability.
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Simulation Results for Torus and BFT

Average Latency Comparison Average Acceptance Rate Comparison Minimum Acceptance Rate Comparison Average Hop Count Comparison AN
. Flattened O Future works may be in the direction of investigating the
gos - Butterfly NIL 1-8 31-95 5-14 thermal effects and optimizing it accordingly with a suitable
| \\ core placement strategy, investigating and improving
] J J J i J J J I \\\\ performance using real time application mapping and so on.
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