
FuzzRoute: A Method For Thermally **Efficient Congestion Free Global Routing in** 3D ICs

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

Motivation

- Global routing phase of VLSI Physical Design is becoming more challenging with ever increasing design complexity
- Large problem space leads global routing problem to NP Complete one
- Heuristic based approaches are generally used
- One preliminary approach using fuzzy logic for global routing was stated in [1, 2]

・ロト ・得ト ・ヨト ・ヨ

July 9, 2014

Objective

• Propose a novel multi-objective global routing technique to offer a thermal aware and congestion free solution for global routing of interconnects in 3D ICs using a powerful soft computing technique viz. fuzzy logic

・ロト ・ 同ト ・ ヨト ・ ヨ

July 9, 2014

Contribution

- An existing placement heuristic is modified to get an overlap free 3D placement
- After placement and prior to routing, a set of guiding information is generated, helps routing in subsequent steps
- During global routing, decision is taken from a Fuzzy Expert System

< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

Contribution

- FuzzRoute is capable of generating congestion free solution for all the ISPD '98 benchmarks
- The improvements on routing time for Labyrinth, BoxRouter 2.0, and FGR are 91.81%, 86.87%, and 32.16%, respectively
- Success of proposed approach has opened up an avenue for research in global routing phase

July 9, 2014

A Bird's Eye View...

- Problem Description
- Proposed Solution
- Proposed Fuzzified Approach for Global Routing
- Experimental Result
- Time Complexity
- Conclusion
- Future Work

UNT

6 / 31

.

July 9, 2014

- Concept of Thermal Sensitivity [3] and Congestion Ratio
- Fuzzification of Thermal Sensitivity and Congestion Ratio
- Fuzzification of Ineligibility Factor
- Grade of Membership Function

・ロト ・ 同ト ・ ヨト ・ ヨ

July 9, 2014

• Concept of Thermal Sensitivity and Congestion Ratio

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure
 - Each grid have thermal sensitivity value

< ロ > < 同 > < 回 > < 回 > < 回

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure
 - Each grid have thermal sensitivity value
 - Subregions are constructed with multiple grids

July 9, 2014

・ロト ・同ト ・ヨト ・ヨ

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure
 - Each grid have thermal sensitivity value
 - Subregions are constructed with multiple grids
 - Preoccupied blocks and pre-routed nets caused congestion in subregions

July 9, 2014

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure
 - Each grid have thermal sensitivity value
 - Subregions are constructed with multiple grids
 - Preoccupied blocks and pre-routed nets caused congestion in subregions
 - Subregion with less sensitivity value and less congested will be preferable for routing

- Concept of Thermal Sensitivity and Congestion Ratio
 - Routing layer is represented as grid structure
 - Each grid have thermal sensitivity value
 - Subregions are constructed with multiple grids
 - Preoccupied blocks and pre-routed nets caused congestion in subregions
 - Subregion with less sensitivity value and less congested will be preferable for routing
 - Routing eligibility is inversely proportional to these factors

July 9, 2014

• Fuzzification of Thermal Sensitivity and Congestion Ratio

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

- Fuzzification of Thermal Sensitivity and Congestion Ratio
 - Three linguistic variables: Sensitivity (s_r) and Congestion (o_r) Ratio

- Fuzzification of Thermal Sensitivity and Congestion Ratio
 - Three linguistic variables: Sensitivity (s_r) and Congestion (o_r) Ratio
 - All variables vary within [0,1]

- Fuzzification of Thermal Sensitivity and Congestion Ratio
 - Three linguistic variables: Sensitivity (s_r) and Congestion (o_r) Ratio
 - All variables vary within [0,1]
 - Belongs to premise part

< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

- Fuzzification of Thermal Sensitivity and Congestion Ratio
 - Three linguistic variables: Sensitivity (s_r) and Congestion (o_r) Ratio
 - All variables vary within [0,1]
 - Belongs to premise part
 - Six fuzzy sets from two linguistic variables

< □ > < 同 > < 回 > < 回 > < 回

July 9, 2014

• Derived Fuzzy Sets from Linguistic Variables in Premise Part

Thermal Sensitivity Ratio	Weakly Sensitive(WS)
	Moderately Sensitive(MS)
	Highly Sensitive(HS)
Congestion Ratio	Weakly Congested(WC)
	Moderately Congested(MC)
	Highly Congested(HC)

July 9, 2014 10 / 31

臣

< ロ > < 同 > < 回 > < 回 > < 回

- Fuzzification of Ineligibility Factor
 - One linguistic variable: Ineligibility Criteria (μ_r)

- Fuzzification of Ineligibility Factor
 - One linguistic variable: Ineligibility Criteria (μ_r)
 - Vary within [0,1]

• Fuzzification of Ineligibility Factor

- One linguistic variable: Ineligibility Criteria (μ_r)
- Vary within [0,1]
- Belongs to consequent part

• Fuzzification of Ineligibility Factor

- One linguistic variable: Ineligibility Criteria (μ_r)
- Vary within [0,1]
- Belongs to consequent part
- Number of fuzzy sets: 9 fuzzy sets

・ロト ・ 同ト ・ ヨト ・ ヨ

July 9, 2014

- Fuzzification of Ineligibility Factor
 - One linguistic variable: Ineligibility Criteria (μ_r)
 - Vary within [0,1]
 - Belongs to consequent part
 - Number of fuzzy sets: 9 fuzzy sets
 - Boundary values for all fuzzy sets are generated during guiding information generation

•
$$\mu_r = \frac{(\alpha \times s_r + \beta \times o_r)}{(\alpha + \beta)}$$
 where, $\alpha + \beta = 1$.

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

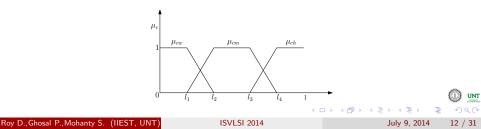
< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

Problem Description

• Grade of Membership Function

μ_{ch}	$ \begin{array}{l} = 0 \\ = 1 \\ = (x - l_3)/(l_4 - l_3) \end{array} $	$\begin{array}{l} \text{for } x < I_3 \\ \text{for } x \geq I_4 \\ \text{for } I_3 < x < I_4 \end{array}$
μ _{cm}	$ \begin{array}{l} = 0 \\ = 1 \\ = (x - l_1)/(l_2 - l_1) \\ = (l_4 - x)/(l_4 - l_3) \end{array} $	
μ_{cw}		$\begin{array}{l} \text{for } x > l_2 \\ \text{for } x \leq l_1 \\ \text{for } l_1 < x < l_2 \end{array}$

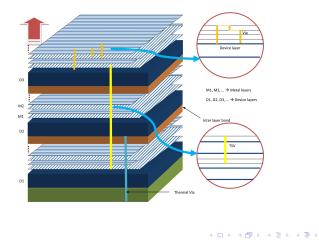


Problem Description

• Grade of Membership Function

=0 for $x < l_3$ for $x \ge l_4$ μ_{ch} = 1 $= (x - l_3)/(l_4 - l_3)$ for $l_3 < x < l_4$ = 0 for $x < l_1 \& x > l_4$ μ_{cm} = 1for $l_2 \le x \le l_3$ $=(x - l_1)/(l_2 - l_1)$ for $l_1 < x < l_2$ $= (l_4 - x)/(l_4 - l_3)$ for $l_3 < x < l_4$ = 0 for $x > l_2$ μ_{cw} for $x \leq l_1$ = 1 $= (l_2 - x)/(l_2 - l_1)$ for $l_1 < x < l_2$

Graph Corresponding to the Grade of Membership Functions



- 3D Integration Structure
- Modified 3D Placement Procedure
- Pre-routing Information Generation
 - Proposed Rule Base
 - Proposed Fuzzy Expert System

-

July 9, 2014

• 3D Integration Structure

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

July 9, 2014 14 / 31

3

- Modified 3D Placement Procedure
 - Proper 3D placement benchmarks are unavailable till now
 - Heuristic proposed in [4, 5] is modified to get 100 % overlap eliminated placement
 - Non-overlapping placement structure in 3D is got

< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

• Pre-routing Information Generation

Proposed Rule Base

1.	If s_r is WS and o_r is WC then μ_r is $1^{st}I$
2.	If s_r is WS and o_r is MC then μ_r is $2^{nd}I$
3.	If s_r is WS and o_r is HC then μ_r is $3^{rd}I$
4.	If s_r is MS and o_r is WC then μ_r is $4^{th}I$
5.	If s_r is MS and o_r is MC then μ_r is $5^{th}I$
6.	If s_r is MS and o_r is HC then μ_r is $6^{th}I$
7.	If s_r is HS and o_r is WC then μ_r is $7^{th}I$
8.	If s_r is HS and o_r is MC then μ_r is $8^{th}I$
9.	If s_r is HS and o_r is HC then μ_r is $9^{th}I$

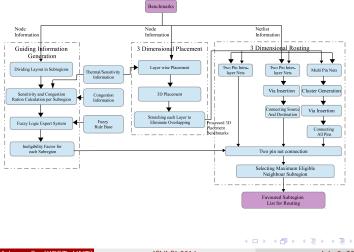
臣

<ロト < 団ト < 団ト < 団ト

• Pre-routing Information Generation

Proposed Rule Base

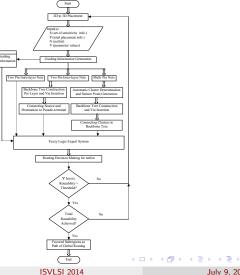
1. If	s_r is WS and o_r is WC then μ_r is $1^{st}I$
2. If	s_r is WS and o_r is MC then μ_r is $2^{nd}I$
3. If	s_r is WS and o_r is HC then μ_r is $3^{rd}I$
4. If	s_r is MS and o_r is WC then μ_r is $4^{th}I$
5. If	s_r is MS and o_r is MC then μ_r is $5^{th}I$
6. If	s_r is MS and o_r is HC then μ_r is $6^{th}I$
7. If	s_r is HS and o_r is WC then μ_r is $7^{th}I$
8. If	s_r is HS and o_r is MC then μ_r is $8^{th}I$
9. If	s_r is HS and o_r is HC then μ_r is 9 th I


Proposed Fuzzy Expert System

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

July 9, 2014 16 / 31

Overall Scheme



Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 17 / 31

Overall Flow of Routing Procedure

UNT

18 / 31

3

July 9, 2014

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

UNT

19 / 31

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

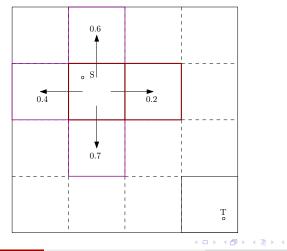


Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

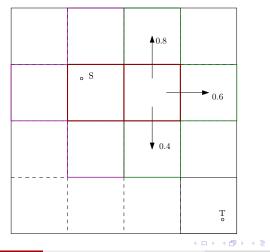


Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

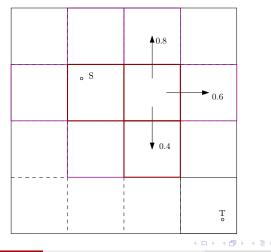


Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

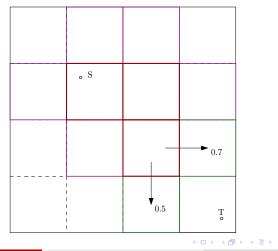


Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

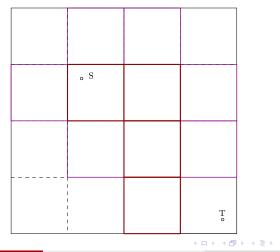


Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

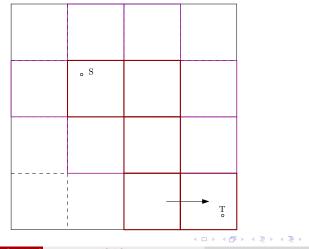
• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination



Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

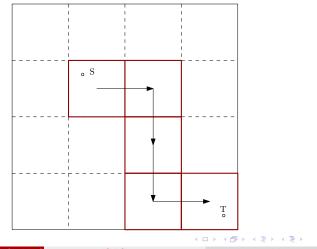
July 9, 2014 19 / 31


• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination



Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 19 / 31

• A Scenario of Fuzzified Intra-layer Global Routing from Source to Destination

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

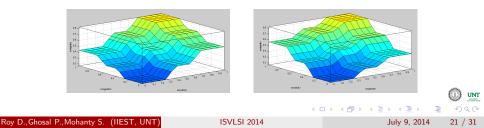
July 9, 2014 19 / 31

- Framework :
 - Software and Language: C, Java and MATLAB 7.14.0, MCR, and MATLAB Builder JA
 - Configuration: Intel chip @2.30 GHz
 - Benchmarks: ISPD'98[6] (IBM-PLACE 2.0)

< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

• Fuzzification and Defuzzification with respect to Rule Base


臣

<ロト </p>

• Fuzzification and Defuzzification with respect to Rule Base

• Change of Ineligibility Factor with Sensitivity and Congestion Ratio

• Experimental Benchmark Statistics

Benchmark	# Net	# Layer	Guiding Info	Routing
			Gen Time(s)	Time(s)
ibm01	11507	4	85.0	3.0
		6	36.0	3.0
ibm02	18429	4	121.0	6.0
		6	85.0	4.0
ibm07	44394	6	247.0	22.0
		8	220.0	20.0
ibm08	47944	6	307.0	26.0
		8	297.0	21.0
ibm09	50393	6	294.0	28.0
		8	278.0	22.0
ibm10	64227	6	485.0	33.0
		8	472.0	32.0
ibm11	67016	6	372.0	74.0
		8	367.0	57.0
ibm12	67739	6	605.0	120.0
		8	582.0	96.0

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

July 9, 2014 22 / 31

Э

<ロ> (日) (日) (日) (日) (日)

• Experimental Benchmark Statistics

Benchmark	# Net	# Layer	Guiding Info	Routing	
			Gen Time(s)	Time(s)	
ibm01	11507	4	85.0	3.0	
		6	36.0	3.0	
ibm02	18429	4	121.0	6.0	
		6	85.0	4.0	
ibm07	44394	6	247.0	22.0	
		8	220.0	20.0	
ibm08	47944	6	307.0	26.0	
		8	297.0	21.0	
ibm09	50393	6	294.0	28.0	
		8	278.0	22.0	
ibm10	64227	6	485.0	33.0	
		8	472.0	32.0	
ibm11	67016	6	372.0	74.0	
		8	367.0	57.0	
ibm12	67739	6	605.0	120.0	
		8	582.0	96.0	

• Variation of Guiding Information Generation Time and Routing Time for Different ISPD '98 Benchmark Circuits with Layer Number = 6

• Layer wise Statistics for ibm10 Benchmark Circuit

#Layers	Guiding Info	Routing		
	Gen Time(s)	Time(s)		
3	547.0	54.0		
4	519.0	42.0		
5	489.0	35.0		
6	485.0	33.0		
7	480.0	32.0		
8	472.0	32.0		


臣

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Layer wise Statistics for ibm10 Benchmark Circuit

#Layers	Guiding Info	Routing			
	Gen Time(s)	Time(s)			
3	547.0	54.0			
4	519.0	42.0			
5	489.0	35.0			
6	485.0	33.0			
7	480.0	32.0			
8	472.0	32.0			

• Variation of Routing Time with Available Number of Layers for ibm10 Benchmark Circuit

• Comparison Between Published Global Routers and FuzzRoute on ISPD '98 Benchmark

Benchmark	Laby	Labyrinth FastRoute3.0		NTHU-R		BoxRoute 2.0		FGR		FuzzRoute (This Paper)		
	wlen	cpu(s)	wlen	cpu(s)	wlen	cpu(s)	wlen	cpu(s)	wlen	cpu(s)	wlen	cpu(s)
ibm01	77K	21.2	64221	0.64	63321	4.17	62659	33	63332	10	46276	3.0
ibm02	205K	34.5	172223	0.85	170531	7.44	171110	36	168918	13	166922	4.0
ibm07	449K	228.1	369023	1.68	366288	15.89	365790	86	366180	18	357121	22.0
ibm08	470K	238.7	405935	1.82	405169	13.17	405634	90	404714	18	382855	26.0
ibm09	481K	505	414913	1.67	415464	11.59	413862	273	413053	20	403647	28.0
ibm10	680K	588	582838	3.61	580793	33.72	590141	352	578795	92	595465	33.0
Total	2362K	1615.5	2010K	10.27	2001K	85.98	2009K	870	1993K	171	1952K	116.0
Norm	1.21	13.92	1.03	0.088	1.03	.74	1.03	7.5	1.02	1.474	1	1

э

<ロト < 団ト < 団ト < 団ト

Time Complexity

- Time Complexity for Generating the Guiding Information is $O(l \times m \times n)$, where
 - *I* = total number of layers
 - *m* = number of subregions in *x* direction
 - n = number of subregions in y direction of the layout

Time Complexity

- Time Complexity for Generating the Guiding Information is $O(l \times m \times n)$, where
 - *l* = total number of layers
 - m = number of subregions in x direction
 - n = number of subregions in y direction of the layout
- Time Complexity for Routing = Time Complexity for Generating the Guiding Information + Time Required to Process Fuzzy Expert System for Each Layer

(ロ) (部) (目) (日) (日)

July 9, 2014

Conclusion

- Pioneering approach for global routing using fuzzy logic for standard cells
- Achieving a prominent degree of reliability and routability with a reasonable time complexity
- Successfully verified for all intra, and inter-layer nets for 3D ICs
- Tested on ISPD'98 benchmark suites and compared with some well known global routers
- Opened up an avenue for research in global routing phase

< ロ > < 同 > < 回 > < 回 > < 回

July 9, 2014

Future Work

- Design of a Foolproof Global Router for 3D ICs Considering Other Metrics(like parasitic effect)
- Further Comparison with Recent ICCAD 2009, ISPD 2011 and ISPD 2014 Benchmarks
- Extension to Mixed Sized Cell Placements

・ロト ・ 同ト ・ ヨト ・ ヨ

July 9, 2014

Reference I

- D. Roy and P. Ghosal. "A fuzzified approach towards global routing in VLSI layout design". In: *Fuzzy Systems (FUZZ), 2013 IEEE International Conference on.* 2013, pp. 1–8. DOI: 10.1109/FUZZ-IEEE.2013.6622477.
- [2] D. Roy, P. Ghosal, and N. Das. "A thermal and congestion driven global router for 3D integrated circuits". In: *Students' Technology Symposium (TechSym)*, 2014 IEEE. 2014, pp. 303–308. DOI: 10.1109/TechSym.2014.6808065.
- [3] P. Ghosal et al. "Thermal-aware Placement of Standard Cells and Gate Arrays:Studies and Observations". In: Symposium on VLSI, 2008. ISVLSI '08. IEEE Computer Society Annual. 2008, pp. 369 -374.

28 / 31

< ロト < 同ト < ヨト < ヨト

Reference II

- [4] P. Ghosal, H. Rahaman, and P. Dasgupta. "Minimizing Thermal Disparities during Placement in 3D ICs". In: Computational Science and Engineering (CSE), 2010 IEEE 13th International Conference on. 2010, pp. 160–167. DOI: 10.1109/CSE.2010.28.
- [5] P. Ghosal, H. Rahaman, and P. Dasgupta. "Cell level thermal placement in 3D ICs". In: India Conference (INDICON), 2010 Annual IEEE. 2010, pp. 1–4. DOI: 10.1109/INDCON.2010.5712701.
- [6] C. J. Alpert. "The ISPD98 circuit benchmark suite". In: ACM International Symposium on Physical Design. 1998, pp. 80–85.

< ロ > < 圖 > < 圖 > < 画 >

Any Question???

p_ghosal@it.becs.ac.in

July 9, 2014

イロト イヨト イヨト

크

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

Thank You!!!

Roy D., Ghosal P., Mohanty S. (IIEST, UNT)

ISVLSI 2014

July 9, 2014 31 / 31