
A Performance Enhancing Hybrid Locally Mesh Globally Star NoC Topology

Tuhin Subhra Das[†], Prasun Ghosal^{††}, Saraju P. Mohanty[‡], Elias Kougianos[‡]

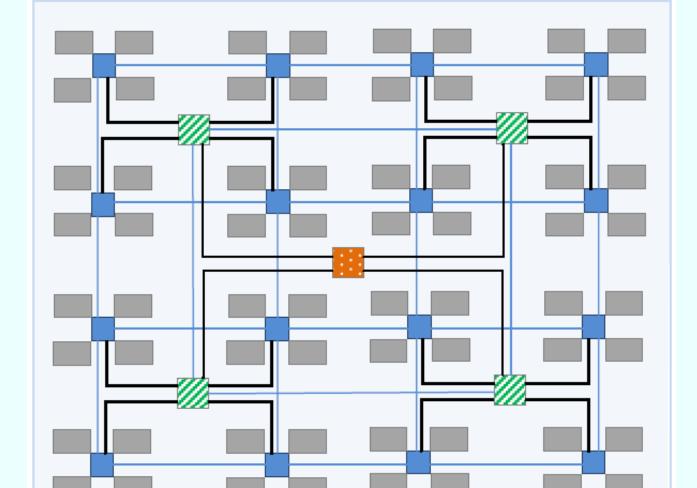
[†] Indian Institute of Engineering Science and Technology, Shibpur (www.becs.ac.in), Howrah 711103, WB, India [‡] NanoSystem Design Laboratory (http://nsdl.cse.unt.edu), University of North Texas, Denton, TX 76203, USA Email: tuhinbcrec@gmail.com, prasun@ieee.org, saraju.mohanty@unt.edu, eliask@unt.edu

ATAGLANCE		P ROPOSED TO	OPOLOGY	
 Rapid decrease in size in CMOS technology → so dimension Necessity of portable high end communication so Network-on-Chip (NoC) has come up as a sustain NoC provides a massively parallel communication 	Topology	ocally Mesh Globally S	tar (HLMGS) NOC	
 Underlying network interconnection architectu towards the overall system performance enhance 				
Problems in Bus Based SoC	τρ τρ τρ			

- Challenge in integrating different silicon IPs on the same IC
- Concurrent communication is not possible in shared bus system
- More components increase \rightarrow loading increases \rightarrow further drop of speed, and increase in power consumption

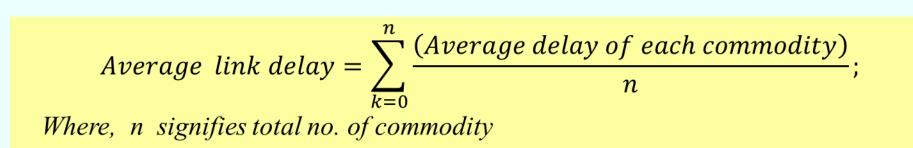
TOPOLOGY METRICS

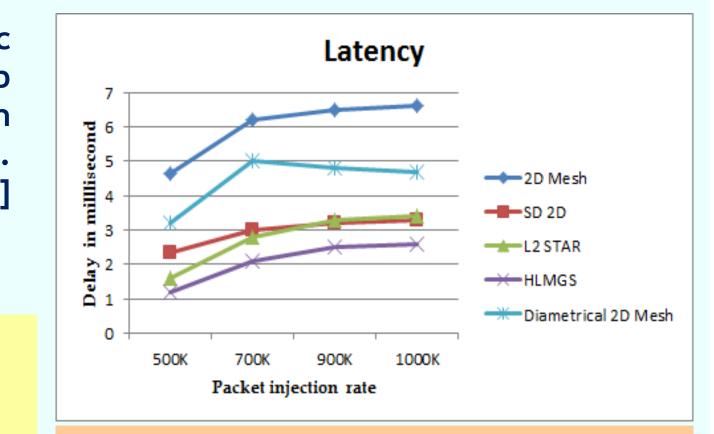
EXPERIMENTAL RESULTS


Proposed Hybrid NOC Topology Important parameters of an M × M sized proposed architecture are as follows (where, $M = 2^{m}$ for m = 2, 3, 4, ..., n.)

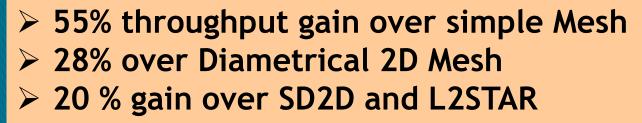
Bisection width = M + 4Maximum node degree of non-leaf router = 7

Maximum node degree of leaf router = 9, when N = 4


Maximum node degree of leaf router = 6, when N = 1


Maximum number of IP cores connected to a network = M×M×N

IP


• Simulated result on important performance centric parameters like packet delay, throughput, packet drop ratio has been calculated and compared with Mesh topology, and with some other hybrid topology viz. SD2D[2], L2STAR [3], and Diametrical 2D Mesh[4] topology

Observed latency of proposed 8x8 sized

Where, N represents the numbers of IP connected to each leaf level router.	CORE Leaf Node Leaf Router / Level 0 router Level 1 router Level 2	router	Average commodity delay $= \sum_{k=0}^{p} (Time \ stamp \ of \ data \ packet \ received \ at \ sink \\ - Time \ stamp \ of \ data \ packet \ sent \ at \ source)/p;$ Where, p signifies the total no. of packet received by sink	 topology: Latency benefit of 62% over 2D Mesh 44% over Diametrical 2D Mesh 30% over SD2D and L2STAR 		
Experimental results			Conclus	SION & FUTURE WORK		
Total _ packets / flits _ received _ in _ by _ sin k / Throughput = Number _ of _ com mod ity		Area	Overhead: (Using method proposed in [5]) Phared to simple mesh. HI MGS topology has	 Proposed topology improves system performance in terms of latency and throughput Future works may be extended to minimize this area overhead as well as reduction of channel contention 		
Throughput		top	area overhead of 31% to 13% for 8x8 sized ology with varying IP core connected to each ter from 1 to 4 System perfection	 Observed result may be verified further by other NoC specific simulator to prove novelty of the proposed work System performance can be improved further by forwarding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets in some congestion aware dynamic was a specific warding packets warding packets		
600 500 400 400 300 200 100 400 500 500 500 500 500 500 5	h SD 2D CONTRACTOR OF CONTRACTOR OF CONTRAC	[1] S Com	Ong, Z.; Guangsheng Ma; Song, D., "Hierarchical Star: An Optimal N puter and Computational Sciences, 2008. IMSCCS '08. International	loC Topology for High-Performance SoC Design,"		
				on-chip Routing Using Structural Diametrical 2D Mesh Architecture", In Emerging Applications of Information Technology (EAIT 2012),		
Throughput of proposed 8x8 sized topology:	Throughput of proposed 12x12 sized topology:	[3] Prasun Ghosal, and Tuhin Subhra Das, "L2STAR: A Star Type Level-2 2D Mesh Architecture for NoC", In proceedings of IEEE Asia-Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia 2012), BITS-Pilani, Hyderabad Campus, India, Dec 05-07, 2012				

> HLMGS has 42% gain over Mesh > 32% over Diametrical 2D Mesh > 27% over L2STAR and 14% over SD2D [4] M. Reshadi, A. Khademzadeh, A. Reza, and M. Bahmani, "A Novel Mesh Architecture for On-Chip Networks", D & R Industry Articles, http://www.design-reuse.com/articles/23347/on-chip-network.html [5] Suboh, S.; Bakhouya, M.; Gaber, J.; El-Ghazawi, T., "Analytical modeling and evaluation of network-on-chip architectures," High Performance Computing and Simulation (HPCS), 2010 International Conference on , vol., no., pp.615,622, June 28 2010-July 2 2010

