
RESEARCH POSTER PRESENTATION DESIGN © 2011 www.PosterPresentations.com

Reversible Circuit Synthesis Using ACO and
SA based Quine-McCluskey Method

Mayukh Sarkar1, Prasun Ghosal1,2, Saraju P. Mohanty2

1 Department of Information Technology, Bengal Engineering and Science University, Shibpur, WB 711103, India
2 Department of Computer Science and Engineering, University of North Texas, TX 76203, USA

Email: Prasun.Ghosal@unt.edu

Reversible circuits are becoming more and more important
in terms of computing for present and future days.
However, due to several factors, known synthesis
approaches of classical Boolean logic like Karnaugh Map
and Quine-McCluskey method cannot be applied directly to
synthesize a reversible logic. In this work, a stochastic
procedure to synthesize a reversible circuit has been
proposed. This procedure is based on a modified version of
classical Quine-McCluskey method and is being used under
the wrapper of two intelligent stochastic search techniques,
Simulated Annealing and Ant Colony Optimization.

INTRODUCTION

Simulated Annealing Based Quine-McCluskey (SA-QM) Method

PROPOSED ALGORITHM

REFERENCES
[1] M. Saeedi, M. S. Zamani, and M. Sedighi, “Moving forward: A
non-search based synthesis method toward efficient cnot-based
quantum circuit synthesis algorithms.” ASPDAC, Jan. 2008, pp.
83–88.
[2] P. Gupta, A. Agrawal, and N. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, pp. 2317–2330,
Nov. 2006.
[3] An online resource for reversible benchmarks. [Online].
Available: http://www.revlib.org/.

Reversible Function

An n-input, n-output Boolean function f is reversible if it
maps each input uniquely to each output, and vice-versa,
i.e., there is an one-to-one mapping between i/p and o/p.

ABSTRACT

Requirements of Reversible Function

(1) Tremendous growth of VLSI technology is causing
transistor size to touch the subatomic dimension in
DSM, where laws of classical physics fail. It forces us to
think about quantum physics based computation.
Quantum gates are, by nature, reversible.

(2) Irreversible computation suffers from consistent
information loss. According to Bennett, zero energy
dissipation is possible only with reversible computing.

(3) Other than the quantum computation, there are
several applications of reversible computing in optical
computing, DNA computing, low-power CMOS design
etc.

 Reversible Gates

(1)There are several universal reversible gate libraries,
among which NCT (NOT, CNOT, TOFFOLI) library is
used by the proposed algorithm to synthesize a
reversible specification.

(2)NOT gate alters the input bit unconditionally.
(3) Toffoli gate T(xk ; x1 , x2 , … , xm) with target bit at xk

(represented by larger empty circle), and m control bits
at x1, x2 , … , xm (represented by smaller solid circles),
flips xk, if and only if all of x1 , x2 , … , xm are set;
otherwise, xk is left unchanged. This gate leaves the
control bits unaltered.

(4) The CNOT (Controlled-NOT) gate is a Toffoli gate
with single control bit.

For each ant  Start with a blank circuit  Add a gate to the circuit based on a transition probability  Apply SA-QM to
find out minimum possible circuit  Impose constraints of length and cost of the minimum circuit (returned by SA-QM
to itself and other ants coming next  further add more gates to check for other possible circuits.

(1)Begin with Tstart, add each gate g to the circuit and apply the circuit to the input
truth table.

(2) From resulting truth table, determine heuristic value h(g) using QM and
remove the gate.

(3) best_gate ← g and heuristic ← h(g) is set with probability 1, if h(g) >
heuristic, otherwise with probability e(h(g)-heuristic)/temperature.

(4) The temperature is locally updated to be used by next gate.
(5) The current best gate is added to the circuit.
(6) The operation is repeated until, either
 (i) The circuit found at some stage synthesizes the truth table, or
 (ii) The length or cost constraint is reached, in which case the ant returns as

failed.
(7) The complete operation is repeated for number of ITERATION. Best circuit is

returned.
 Calculation of heuristic h(g) for a gate g

 (1) Apply gate g to the input truth table tin to get the output truth table tout.
 (2) The minterm table mb for each I/O bit b is created by adding the input

entries in mb, for which the bit b gets changed in corresponding output.
 (3) Minimize minterm tables according to QM.
 (4) From final minterm tables of all I/O bits, the heuristic is calculated as,
 h(g) = 100 × (don′t_care_ratio + one_bit_ratio)− total_length
 − Hamming_distance
 where,
 total_length = total length of all tables
 don′t_care_ratio = (total number of don′t care terms / total_length)
 one_bit_ratio = (total number of one bit / total_length)
 Hamming distance = Hamming distance of tout

Ant Colony Optimization

Heuristic Determination of DFS Tree Node

Exploring DFS Tree

(1) A pheromone and heuristic is associated with each node of the DFS tree.
(2) Initially, initialize pheromones with a fixed value INITIAL_PHEROMONE

and calculate heuristics.
(3) Sent ants in parallel from root of the DFS tree. They explore the
 first level of the tree, selects a gate gt with probability p(gt),

 where, pheromonek and heuristick are pheromone and heuristic of kth node.
(4) Each ant invokes SA-QM, updates it’s own cost and length constraint.
(5) Ant updates the pheromone of the node, and explores the next level nodes,

until the length constraint is reached. The pheromone of a node is updated
as,

 where, new_pheromone is (1 / min_cost), if invoked SA-QM succeeds and
returns with circuit of cost min_cost, otherwise 0.

(6)Update global length and cost constraint by the minimum by n ants.
(7) Procedure continues for next n ants and so on till ants finish their journey.

∑
−

=
×

×
=)1(2

1

)(bb

i ii

tt
t

heuristicpheromone

heuristicpheromonegp
βα

βα

pheromonenewpheromoneNEVAPORATIOpheromone tt _+×=

Function Name

Functions

Gate Count

MOSAIC PPRM Proposed

Method
rand_3_1 [7,0,1,2,3,4,5,6] 3 3 3
rand_3_2 [0,1,2,3,4,6,5,7] 3 3 5
rand_3_3 [0,1,2,4,3,5,6,7] 7 5 6
rand_3_4 [1,2,3,4,5,6,7,0] 3 3 3
rand_3_5 [3,6,2,5,7,1,0,4] 8 7 8
rand_3_6 [1,2,7,5,6,3,0,4] 8 6 7
rand_3_7 [4,3,0,2,7,5,6,1] 6 7 7
rand_3_8 [7,5,2,4,6,1,0,3] 6 7 7
rand_3_9 [1,0,3,2,5,7,4,6] 4 4 5
rand_4_1 [13,1,14,0,9,2,15,6,12,8,11,3,4,5,7,10] 29 16 14
rand_4_2 [0,1,2,3,4,5,6,8,7,9,10,11,12,13,14,15] 9 7 10
rand_4_3 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0] 4 4 4
rand_4_4 [0,7,6,9,4,11,10,13,8,15,14,1,12,3,2,5] 4 4 4
rand_4_5 [6,2,14,13,3,11,10,7,0,5,8,1,15,12,4,9] 19 15 14

(1) The heuristic probability of some node is represented by
the probability of adding the next gate in the circuit c after
node.

(2) Assuming the result of application of c to the input truth
table is tout, the probability that a particular bit, say tth bit ,
will be changed first in tout , is calculated as,

 For any initial permutation (i1, i2, i3, …, i2
n) and final

permutation (z1, z2, z3, …, z2
n), if j1, j2, …, jm be the

indices, for which ijk ≠ zjk , and at these indices the
permutations differ in b1, b2, …, bm bit positions, then for
any bit t, the probability that the immediate next gate in
the circuit controls the tth bit is,

 where, αk = 1, if tth bit is changed from ijk to zjk , and, 0,
otherwise

(3) The number of CNT gates having control at any
particular bit t is 2n-1 . So the probability of next
immediate gate g is (p(t) / 2n-1), where g controls bit t.

!!!
)!1()!1()!1()(

21

2211

m

mm

bbb
bbbtp

+++
−++−+−

=


 ααα

Experimental Results

Table 1 : Gate Count comparison with MOSAIC [1] and PPRM [2]
Functions Cost Cost Increased

RevLib
Minimum Cost

Proposed
Method

ham_3_28 9 9 0%
3_17_6 14 14 0%
4_49_7 32 36 12.5%

hwb4_12 23 26 13%
Table 2 : Cost comparison with Revlib [3]

NOT Gate CNOT Gate Toffoli Gate

Start

Explore next level of
DFS tree nodes

Send next
NO_OF_PROCESSORS

ants in parallel

Select a gate gt with
probability p(gt)

Invoke Simulated
Annealing based Quine-

McCluskey with the
selected gate.

A Circuit
has been

found

Update own
length and cost

constraint

Update pheromone of
the node.

Wait for other parallel
ants to finish

Length
constraint
reached

Update global length and
cost constraint

All ants have
finished their

journey

Output
minimum

circuit

Determine heuristic of
the next level DFS tree

node

Ant returned as
failed

No

Yes

No Yes

No

Yes

Input
truth
table

	Slide Number 1

