Polynomial Metamodel Integrated Verilog-AMS for Memristor-Based Mixed-Signal System Design

G. Zheng, S. P. Mohanty², E. Kougianos³ and O. Okobiah⁴ NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3,4}

> Presented By Oghenekarho Okobiah Email:000032@unt.edu

Acknowledgments: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Outline

- Motivation and Background
- **Novel Contributions**
- Proposed Memristor Model
- Case Study Design
 - Metamodel Technique
- Conclusion

Background and Motivation

- Emerging integrated circuits featuring memristors
- Efficient block level representations are required for high level design space exploration

Novel Contributions

- Verilog-A model for memristor which includes threshold and non-linear dopant drift for TiO₂
- Memristor programmable Schmitt trigger oscillator design
- Polynomial metamodels for proposed oscillator
- Verilog-AMS model embedding polynomial metamodels

Memristor Model

The Memristor Model

Based on coupled variable-resistor of TiO₂

$$V_M = [R_{on}x + R_{off}(1-x)]I_M, \qquad (1)$$

$$\frac{dx}{dt} = \mu_v \left(\frac{R_{on}}{D^2}\right)I_M, \qquad (2)$$

Hard switching/terminal state problem

Proposed Memristor Model

An exponential dopant drift model expressed

$$v \approx \begin{cases} \mu_v E & \text{if } E \ll E_o, \\ \mu_v E_o e^{E/E_o} & \text{if } E \sim E_o, \end{cases}$$
(3)

Eq 2 is modified to be extended as:

$$\frac{dx}{dt} = \begin{cases} \mu_v \frac{V_p}{D^2} e^{\frac{R_{on}}{V_p} I_M} & \text{if } V_M \ge V_p, \\ \mu_v \frac{V_n}{D^2} e^{\frac{R_{on}}{V_n} I_M} & \text{if } V_M \le V_n, \\ \mu_v \frac{R_{on}}{D^2} I_M & \text{otherwise.} \end{cases}$$
(4)

Circuit Parameters are retained

Verilog-A Memristor Model

- Spice memristor models are source type dependent
- Verilog-A is not restricted and hence more suitable.
- Memristor device model implemented in verilog-A anso MATLAB Simulink

Fig. 1: Time-domain simulation of memristor. A 2-V, 40-Hz sine wave is applied to a memristor: $R_{on} = 1 \text{ k}\Omega$, $R_{off} = 10 \text{ k}\Omega$, $\mu_v = 10^{-14} \text{ m}^2\text{/s/V}$, $V_p = 1.7 \text{ V}$, $V_n = -1.7 \text{ V}$.

Memristor Based Programmable Oscillator

(a) Schmitt trigger oscillator (b) Memristor based programmable oscillator.
 Fig. 2: The conventional Schmitt trigger oscillator and the proposed one with added programmability.

Memristor Based Programmable Oscillator

Programming Process

- Reset:
 - Reset closed
 - Memristor state set to 1
- Set:

08/06/2013

- Set closed
- Set to desired state.

 (a) Schmitt trigger oscillator
 (b) Memristor based programmable oscillator.
 Fig. 2: The conventional Schmitt trigger oscillator and the proposed one with added programmability.

Programming Simulation

■ *x* = 0.1

08/06/2013

CMOS Implementation

- 90nm technology
- 1-V Power supply

Ln, Lp = 100nm

Fig. 4: Memristor based programmable oscillator design.

08/06/2013

Oscillator Characteristics

TABLE I: Oscillator Characteristics						
Memristor based Programmable Oscillator						
$R_M(x)$	Frequency	Jitter	Power			
$100 \text{ k}\Omega (0)$	34.4915 MHz	536 ps	130.4 μW			
55 kΩ (0.5)	59.662 MHz	323 ps	133.9 μW			
$10 \text{ k}\Omega (1)$	251.459 MHz	69 ps	161.2 μ W			
Schmitt Trigger Oscillator						
S	Schmitt Trigger (Oscillator				
R	Schmitt Trigger (Frequency	Oscillator Jitter	Power			
R 100 kΩ	Schmitt Trigger (Frequency 34.4887 MHz	Oscillator Jitter 615 ps	Power 130.4 μW			
R 100 kΩ 55 kΩ	Schmitt Trigger (Frequency 34.4887 MHz 59.6531 MHz	Jitter 615 ps 257 ps	Power 130.4 μW 133.9 μW			

Power has no noticeable change

For $R = 100K\Omega$,

Schmitt exhibits larger jitter due to domination from resistor thermal noise For $R = 50K\Omega$,

Resistor noise is reduced, memristor exhibits more jitter

For $R = 10K\Omega$,

Memristor is insensitive to higher frequency, schmitt exhibits more jitter.

Metamodeling for the Memristor Based Design

Design Parameter Ranges

TA	ABLE II:	Variables	and	their	ranges	for	$x_{POM}($	(\mathbf{v})).

Variable	Minimum	Maximum	Device	
t_{set}	0 ms	100 ms	-	
I_p	$80 \ \mu A$	120 µA	-	
R_{on}	8 k Ω	$12 \text{ k}\Omega$	R_M	
R_{off}	80 k Ω	$120 \text{ k}\Omega$	R_M	
W_P	$1.6 \ \mu \mathrm{m}$	$2.4~\mu{ m m}$	M9, M10	
W_N	$0.8 \ \mu m$	1.2 μm	M11, M12	
$x_{POM}(\mathbf{v}) = x_{POM}(t_{set}, I_p, R_{on}, R_{off}, W_P, W_N)$				

Memristor Surface Response

Fig. 5: Memristor state response surface as a function of the programming current and the set time.

Transient Analysis of Memristor Oscillator

Fig. 6: Transient analyses of the memristor based oscillator using Verilog-AMS-POM (top) and SPICE netlist (bottom).

Comparison of Verilog-AMS-POM with SPICE

TABLE III: Runtime of memristor-based oscillator.

$egin{array}{c} x \end{array}$	Verilog-AMS-POM	SPICE	Speedup
0.1	10.72 ms	360.31 s	33704×
0.3	11.60 ms	335.96 s	$28962 \times$
0.5	11.77 ms	349.10 s	29660×
0.7	11.73 ms	348.08 s	$29674 \times$
0.9	10.91 ms	355.97 s	32628×

Conclusion

- The proposed memristor device model is demonstrated and retains circuit parameters
- The polynomial metamodeling technique creates accurate and efficient models
- Verilog-AMS-POM improves the simulation speed significantly.

Thank you !!!

08/06/2013