Geostatistics Inspired Fast Layout Optimization of Nanoscale CMOS Phase Locked Loop

O. Okobiah¹, S. P. Mohanty² and E. Kougianos³ NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3}

Email: oo0032@unt.edu¹, saraju.mohanty@unt.edu² and eliask@unt.edu³

Presented By Oghenekarho Okobiah

Acknowledgments: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Outline of the talk

aborator

UNIVERSITY OF NORTH TEXAS

Discover the power of ideas

2

Background and Motivation

- Computer simulations are expensive
- Pronounced effects of process variations in deep nanometer regions
 - Increase in number of design parameters
 - Current modeling techniques not effective at capturing effects of process variation
- Complex and high density designs
- Designs for low power consumption

Novel Contributions

- Exploring Kriging for high dimensional metamodeling
- Design flow methodology
 - Kriging metamodeling and gravitational search algorithm optimization.

Prior Related Research

- Exploration of optimization algorithms for NanoCMOS designs
- Kriging Based Techniques
 - O. Okobiah --- simple and ordinary kriging metamodels
 - G.Yu --- re-iterative Pareto fronts
 - H. You --- kriging metamodeling

Fundamentals of Kriging

 Originally used in geostatistics for mining purposes.

$$y(\mathbf{x}_0) = \sum_{i=1}^{N} \lambda_j B_j(\mathbf{x}) + z(\mathbf{x}), \tag{1}$$

Each point is predicted based on a set of unique weights (λ_j) .

$$\sum_{j=1}^{n} \lambda_j = 1. \tag{3}$$

Fundametals of Kriging...

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \\ \mu \end{pmatrix} = \Gamma^{-1} \begin{pmatrix} \gamma(x_1, x_0) \\ \vdots \\ \gamma(x_n, x_0) \\ 1 \end{pmatrix}, \qquad (3)$$

$$\Gamma = \begin{pmatrix} \gamma(x_1, x_1) & \cdots & \gamma(x_1, x_n) & 1 \\ \vdots & \ddots & \vdots & 1 \\ \gamma(x_n, x_1) & \cdots & \gamma(x_n, x_n) & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad (4)$$

$$\widehat{P_{PLL}}(\mathbf{Wn_0}) = \sum_{j=1}^{L} \lambda_j B_j(\mathbf{wn}) + z(\mathbf{wn}), \quad (7)$$

Gravitational Search Algorithm

- Part of swarm Intelligence family
 - population based heuristic algorithms
- Based on gravitational laws of attraction and motion

$$F_{ij}^{d}(t) = G(t) \frac{M_{pi}(t) \times M_{aj}(t)}{R_{ij}(t) + \epsilon} (x_{j}^{d}(t) - x_{i}^{d}(t)),$$

where F^d_{ij}(t) is design objective, M is the quality of solution at search location i or j, x_i is the set of design parameters at location i

Gravitational Search Algorithm

laboratory

UNT

Symposium 2013

UNIVERSITY OF NORTH TEXAS

Discover the power of ideas

Gravitational Search Algorithm

Case Study Circuit: 180nm PLL

Fig. 3. System level diagram of the PLL

Fig. 4. 180nm layout of the PLL

Proposed **Design Flow**

Discover the power of ideas

UNT UNIVERSITY OF NORTH TEXAS

Design Flow Components

- Design and netlist optimization
 - Baseline design
 - Ischematic and layout)
 - Extract parasitic netlist

Discover the power of ideas

UNT UNIVER

Design Flow Components

- Sampling and Metamodel Generation
 - Parameterize parasitic netlist
 - Identify performance objectives
 - LHS sampling
 - L, W as sampling corners
 - process variation
 - Metamodel for each design objective is generated
 - using mGstat (MATLAB Kriging tool)
 - Design objectives are functions of design parameters

• **e.g.**
$$\widehat{P_{PLL}}(\mathbf{Wn_0}) = \sum_{j=1}^{L} \lambda_j B_j(\mathbf{wn}) + z(\mathbf{wn}),$$
 (7)

Discover the power of ideas

Design Flow Components

- Design Optimization
 - Kriging metamodels optimized with GSA algorithm
 - Conflicting design objectives used as goal and constraint

UNT

Final physical design is drawn

Discover the power of ideas

Experimental Results

TABLE IIIOptimized Parameter Variables

PLL Components	Parameter	Min (m)	Max (m)	Optimal (m)		
Phase Detector	W_{pPD1}	400n	2μ	1.53μ	IVI	etric
	W_{pPD1}	400n	2μ	0.95μ	R	MSE
	W_{pPD1}	400n	2μ	1.00μ		2
	W_{nPD1}	400n 400n	$\frac{2\mu}{2\mu}$	1.16μ	K	2
	$\frac{W_n P D 1}{W_n P D 1}$	400n	$\frac{2\mu}{2\mu}$	1.58μ	-	
	$W_m C D1$	400n	2.11	1.12µ		
	W_{nCP1}	400n	$\frac{2\mu}{2\mu}$	1.32μ	-	
Charge Pump	W_{nCP2}	2μ	4μ	2.07μ	_	
	W_{pCP2}	4μ	4μ	4.72μ		
	W_{nLC}	3μ	20μ	12.22μ		
10-700	W_{pLC}	6μ	40μ	14.83μ		
	W_{pDIV1}	400n	2μ	1.06μ		
	W_{pDIV2}	400n	2μ	1.11μ		
Divider	W_{pDIV3}	400n	2μ	0.75μ	-	
	W_{pDIV4}	400n 400 n	$\frac{2\mu}{2\mu}$	1.78μ	-	
	$\frac{W_{nDIV1}}{W_{DIV1}}$	400n 400n	$\frac{2\mu}{2\mu}$	1.55μ		
	$\frac{W_{nDIV1}}{W_{nDIV1}}$	400n	$\frac{2\mu}{2\mu}$	1.65μ		
	W_{nDIV1}	400n	$\frac{2\mu}{2\mu}$	1.96µ	-	
	W_{nDIV1}	400n	2μ	0.43µ	-	
Metric		Power ((mW)	Locking Ti	me (ns)	Area (µm²
Baseline Design		8.27		2.74		525 x 326
Optimal Design Reduction		1.67 79 %		2.63 4 %		525 x 326
						0 %

Metric	Value
RMSE	6.46 x 10 ⁻¹⁰
R ²	0.9959

Fig. 5. Optimization Steps of the PLL

Metric	Power (mW)	Locking Time (ns)	Area (µm²)
Baseline Design	8.27	2.74	525 x 326
Optimal Design	1.67	2.63	525 x 326
Reduction	79 %	4 %	0 %

Related Comparison

Research	Test Circuits	Metamodeling Technique	Accuracy	Optimization Technique	
You	Integrated Op-Amp	Kriging	0.5658	-	
Yu	Ring Oscillator	Kriging	0.5325% (MSE)	-	
	LC-VCO		0.5563% (MSE)	-	
Okobiah	Sense Amplifier	Kriging	3.2 x10 ⁻⁹	ACO	
Garitselov	PLL	Polynomial	0.5658	ABC	
		ANN	0.5658		
This work	PLL	Kriging	6.46 x10 ⁻⁹	GSA	

Conclusions

A novel design flow methodology was presented
Incorporating Kriging metamodeling
Demonstrating GSA algorithm based optimization

Optimized PLL power by 79%

Thank you !!!