Stochastic Gradient Descent Optimization for Low Power Nano-CMOS Thermal Sensor Design

O. Okobiah¹, S. P. Mohanty², E. Kougianos³, Oleg Garitselov⁴, and Geng Zheng⁵

NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3,4,5}

Email: 000032@unt.edu¹, saraju.mohanty@unt.edu², eliask@unt.edu³, omg0006@unt.edu⁴, and gengzheng@my.unt.edu⁵

Presented By Oghenekarho Okobiah University of North Texas Email: oo0032@unt.edu

Acknowledgment: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Outline of the talk

- Background and Motivation
- Related Prior Research
- Thermal Sensors
- Proposed Design Optimization Flow Methodology
- Experimental Results
- Conclusions and Future Research Directions

Issues in NanoCMOS Design

- Expensive Computer Simulations
- Pronounced effects of process variations in deep nanometer regions
 - Increase in design parameters
 - Current modeling techniques unable to capture effects of process variation

Background and Motivation

- Complex and High density designs
- Design for low power consumption
- Reliability issues
 - Thermal monitoring

08/21/2012

Novel Contributions

- Design flow methodology incorporating SGD for nano-CMOS design optimization
- Modification of SGD algorithm for global optimization.

Prior Related Research

- Exploration of optimization algorithms for NanoCMOS designs
 - Simulated annealing, swarm intelligence
- Efficient designs for thermal sensors

45nm Thermal Sensor

Ring Oscillators for sensing

2

- Binary Counter
- **Register**

45nm thermal sensor physical design

Proposed Design Flow Diagram

Stochastic Gradient Descent ...

 Utilizes gradient functions to search for optimal values

The general form is given by

$$w_{n+1} = w_n - \gamma_n \nabla P_{TS}(w_n)$$

where w_n is vector set of design parameter, P_{TS} is the objective function and γ is an arbitrary factor for controlling the stepping size

I S V

Stochastic Gradient Descent ...

- Following the gradient descent approach
 - SGD reiteratively steps through the gradient descent until it converges
 - At each step, a subset of parameter vector is used to estimate the gradient.
 - For each step, the subset is randomly chosen also referred as training set
- Modified SGD restarts at random points to mitigate local optimum issues

Stochastic Gradient Descent

Algorithm 1 Stochastic Gradient Descent Based Algorithm

- 1: $N \leftarrow Max_Iter$
- 2: Choose random variable w_0, w'_0
- 3: Calculate FoM $P_{TS}(w_0)$
- 4: while $||P_{TS}(w_{n+1}) P_{TS}(w_n)|| > \epsilon$ do
- 5: Choose a decreasing γ_n (generally $\frac{1}{n}$)
- 6: Estimate $\nabla P_{TS}(w_n)$ using $P_{TS}(w'_n)$
- 7: Compute $x_{n+1} = x_n \gamma_n \nabla P_{TS}(x_n)$
- 8: end while
- 9: $W \leftarrow \{w_n, P_{TS}(w_n)\}$
- 10: Reset w_0, w'_0
- 11: if (w_0) within range of W then
- 12: Reset w_0, w'_0
- 13: **else**
- 14: $N \leftarrow N 1$
- 15: restart search algorithm
- 16: end if
- 17: repeat
- 18: algorithm search
- 19: **until** N = equals 0
- 20: return the lowest couple $w_n, P_{TS}(w_n)$ found.

Optimal Design Results

Design	Average Power	Sensitivity	Area
Schematic	293.1µW	16.88MHz/°C	-
Layout	379.4µW	9.42MHz/°C	1221.37µm²
Final	181.8µW	9.42MHz/°C	1389.31µm²
% Change	37.97%	-	13.75%

Conclusions

- A novel design flow methodology incorporating Stochastic Gradient design based optimization algorithm was presented.
- Average power consumption was reduced by 38%.
- Current techniques will be extended to multi objective optimization.

Thank you !!!

08/21/2012