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Qutline of the talk

= Background and Motivation
= Related Prior Research
= Thermal Sensors

= Proposed Design Optimization Flow
Methodology

= Experimental Results
= Conclusions and Future Research Directions
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Issues in NanoCMOS Design

= Expensive Computer Simulations

= Pronounced effects of process variations In
deep nanometer regions
o Increase Iin design parameters

o Current modeling techniques unable to capture
effects of process variation
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Background and Motivation

= Complex and High density designs
= Design for low power consumption

= Reliablility issues
o Thermal monitoring
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Novel Contributions

= Design flow methodology incorporating SGD
for nano-CMOS design optimization

= Modification of SGD algorithm for global
optimization.
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Prior Related Research

= Exploration of optimization algorithms for
NanoCMOS designs

o Simulated annealing, swarm intelligence
= Efficient designs for thermal sensors
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45nm Thermal Sensor
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A5nm Thermal Senscr
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Frequency response vs temperature for 45nm thermal sensor
Design Sensitivity
Schematic 293.1yW 16.88MHz/°C
Layout 379.4uW 9.42MHz/°C 1221.37um?

% Change +29% -44%

45nm thermal sensor physical design
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Proposed Design Flow Diagram
Grars)
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Perform Optimatization using
Stochastic Gradient Descent Algorithm
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Design Optimization Flow
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Stochastic Gradient Descent ...

= Utilizes gradient functions to search for
optimal values

= The general form is given by
Wn+4+1 — Wp — VnVPTS(wn)
where w, Is vector set of design parameter,
P.s Is the objective function and y Is an

arbitrary factor for controlling the stepping
size
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Stochastic Gradient Descent ...

= Following the gradient descent approach

o SGD reiteratively steps through the gradient
descent until it converges

o At each step, a subset of parameter vector is used
to estimate the gradient.

o For each step, the subset is randomly chosen —
also referred as training set
= Modifled SGD restarts at random points to
mitigate local optimum issues
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Stochastic Gradient Descent

Algorithm 1 Stochastic Gradient Descent Based Algorithm

1:

D = = e e e e e b e
S X AR

A AT A

N «— Max_Iter

Choose random variable w, w)

Calculate FoM Prg(wg)

while ||Prs(wn+1) — Prs(wy,)|| > € do
Choose a decreasing y,, (generally %)
Estimate V Prg(w,, ) using Prg(w!)
Compute z, 11 = ), — ’TIInVPTS (J:-n)

end while

W <« {-wn, PTS (-wn)}

v an!
Reset wq, wy

- if (wp) within range of 11/ then

/
Reset wp, wy

. else
N+ N-—-1
restart search algorithm
end if
. repeat

algorithm search

- until N = equals 0

return the lowest couple w,,, Prs(w,,) found.
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Optimal Design Results

Design Average Sensitivity Area
Power

Schematic 293.1pW 16.88MHz/°C

Layout 379.4uW 9.42MHz/°C 1221.37um?

Final 181.8uW  9.42MHz/°C 1389.31um?

% Change 37.97% - 13.75%
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Conclusions

= A novel design flow methodology incorporating Stochastic

Gradient design based optimization algorithm was
presented.

= Average power consumption was reduced by 38%.

= Current techniques will be extended to multi objective
optimization.
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