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Introduction

« Reliability in the presence of soft errors is an
emerging design challenge
— Further exacerbated by continued technology scaling

» System-level design is highly effective in reliable
multiprocessor system-on-chip (MPSoC) design

« A crucial aspect in such design is to estimate the
reliability in early design phase
— with an aim to assess the comparative component
reliabilities and design low-cost reliable system
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Previous Work

 To estimate reliability at system-level various
approaches have been used over the years

— Hierarchical Monte-Carlo based estimation from
component-level to MPSoC system [Xiang et al]

— MTTF based MPSoC reliability model based on
statistical modelling [ Coskun et al]

— Mean Error Impact based MPSoC reliability model
[Wu and Marculescu]

— Reliability metric based system-level analysis and
estimation [Zhao et al]
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Motivation

* Currently power and reliability estimations are
carried out separately

 Since power minimization directly affects
reliability, component reliability comparisons do
not signify joint consideration of power and
reliability
— Which is much needed for a system where low power
and high reliability are joint objectives

 Hence, a composite metric is much needed
highlighting power and reliability trade-offs
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Motivation

| Examples of separate measurements]

Component Scaling Reliability Power, mW
comp| 66.7MHz @ 0.55V 0.96 0.98
comp?2 100MHz @ 0.6V 0.98 1.96
comp3 200MHz @ 1V 0.99 0.24

comp1 has low power but low reliability; achieved through

aggressive voltage scaling

comp3 has high reliability at the expense of high power;

no voltage scaling applied

comp2 has reliability of 0.98 and a power consumption of

1.08mW

With separate power and reliability measurements, it is

hard to comparatively assess the system reliability
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Contribution

« We propose a novel composite metric, called
power normalized reliability (PNR)

— Expressed as a ratio of system reliability and power

— Aim is to highlight power and reliability trade-offs at system- and
component-level

 Underpinning this metric, a novel estimation
framework, reliability analysis and estimation
framework (RAEF) is presented
— For effective fault injection, analysis and estimation at

various architectural hierarchies: register-level, core-
level and system-level
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Power Normalized Reliability (PNR)

R exp[—Xo kv t]
PNR = —= =
P QY OL Vdgdf

R is reliability expressed as a function of basic soft error rate
(A,), factor of soft error increase with voltage scaling (k),
architectural vulnerability factor (v) and time ()

P is dynamic power expressed as a function of activity factor
(a), load capacitance (C;), supply voltage (V,;) and operating

frequency (f)
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Power versus PNR
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« PNR s high at lower power and low at higher power
o It varies significantly due to different activity factors
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RAEF: Proposed Estimation Framework
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Fault Injection in RAEF

Device Under Test and Testbench

o1 ) Testbench or
. SystemC Top-level
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Simulation Simulation

« Fault injection enabler types form a fault locations database
« Faults are injected at random times/locations based on fault policy
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Hierarchical PNR Estimation
[ @ Register-level]

 PNR is estimated for each register in design
specification

Ric  exp|—gichkeApt]

. « 7 e7e P ' N t?.c Y2 .
R; . is reliability « e —CLViqf 1 function of soft
error rate (A,, per bit per unit time), factor of soft error increase with
voltage scaling on c-th core (k.), size of the register (g; ) and time (7)

PNR; .=

P; . is dynamic power of i-th register in c-th core expressed as a function
of register activity factor (a; . ratio of busy cycles, t*; . and time, t), load
capacitance (C,), supply voltage (V,;) and operating frequency (f)

NOTE: at this level vulnerability does not affect component reliability
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Hierarchical PNR Estimation
[ @ Processing Core-level]

« At processing core-level PNR is estimated for
each core as

exp Z Aic FV )t
PNR. = & =

b
Fe tT Cr Vig f
R, is reliability of c-th core expressed as a function of component soft
error rate (A; ., per bit per unit time), component vulnerability factor (v:
ratio of visible fault, I'V; . and actual number of fault injected, I*; ), and
time (1)

P, is dynamic power of c-th core expressed as a function of core activity
factor (a;.: ratio of busy cycles, tv. and time, t), load capacitance (C;),
supply voltage (V,;) and operating frequency (f)

NOTE: At higher architectural level, vulnerability becomes important.
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Hierarchical PNR Estimation
[@ System-level]

« At system-level, PNR is estimated for the overall
MPSoC system as

PNRexp[ ZA (TY /T4) ¢ } /ZP

Reliability of MPSoC system is expressed as a function of per core core
soft error rate (A, per bit per unit time), component vulnerability factor
(v: ratio of visible fault per core, I'V, and actual number of fault injected
per core, [,), and time (t)

Overall power is expressed as a sum of core dynamic powers

NOTE: At system-level, PNR is determined by various factors including
component vulnerability, activity factor and observation time.
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Case Study: MPEG-2 Decoer

MPSoC  with
decoder cores

four

RAEF will be used to
examine PNR based

reliability at
— register-level
— core-level and

— overall system-level.
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PNR Estimates at Register-level
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Longer registers have low reliability and hence lower PNR
Registers with low activity factor have high PNR

COMMENT: PNR clearly signifies the trade-off, while traditional
reliability fails to do so
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PNR Estimates at Core-level
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Core VLD

Core I1SQ

Core IDCT Core MIC

Processing cores with low activity & vulnerability factor have high

PNR

COMMENT: At core level, reliability metric has minor variations and

does not highlight power trade-off; PNR overcomes this.
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Impact of Voltage Scaling

[and activity factor]
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Processing cores with low activity factor has low power and hence higher
PNR; Voltage scaling significantly improves PNR

NOTICE: Core VLD (which has lowest overall activity factor) has the
highest PNR, while core MC (which has the highest overall activity
factor) has the lowest PNR
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PNR Estimates at System-level
[Impact of Architecture Allocations]
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With higher architecture allocation, register usage increases, which also
degrades core reliabilities and hence overall PNR
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PNR Estimates at System-level

[ Difference between various applications]
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Applications with higher activity factor and higher register usage had
lower overall PNR; hence, MPEG-2 is outperformed by other
applications shown
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Conclusions

 Proposed PNR based estimation 1is highly

effective

— It highlights the comparative reliability between components,
taking into consideration power and reliability jointly

 Using PNR, an analysis and estimation

framework (RAEF) was shown

— Enables PNR based insightful analysis and estimation using
system-level simulation techniques

 The effectiveness of RAEF using PNR was

evaluated
— Using MPEG-2 and various other applications

— Considering the impact of voltage scaling, architecture allocation
and observation times on PNR
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THANK YOU
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