### RAEF: A Power Normalized Systemlevel Reliability Analysis and Estimation Framework

R.A. Shafik<sup>1</sup>, Bashir M. Al-Hashimi<sup>2</sup>, J. Mathew<sup>1</sup>, D.K. Pradhan<sup>1</sup> and S.P. Mohanty<sup>3</sup>

<sup>1</sup>Dept of Computer Science, University of Bristol, UK <sup>2</sup>School of Electronics and Computer Science, University of Southampton, UK <sup>3</sup>Dept of Computer Science and Engineering, University of North Texas, USA

> Presenter: Geng Zheng University of North Texas Email: gengzheng@my.unt.edu









1

### Outline

- Introduction: System-level Reliable Design
- Motivations and Contributions
- Power Normalized Reliability Metric
- RAEF: Proposed Reliability Estimation Framework
- Results: MPEG-2 Decoder and Other Applications
- Conclusions







### Introduction

• Reliability in the presence of soft errors is an emerging design challenge

– Further exacerbated by continued technology scaling

- System-level design is highly effective in reliable multiprocessor system-on-chip (MPSoC) design
- A crucial aspect in such design is to estimate the reliability in early design phase
  - with an aim to assess the comparative component reliabilities and design low-cost reliable system







### **Previous Work**

- To estimate reliability at system-level various approaches have been used over the years
  - Hierarchical Monte-Carlo based estimation from component-level to MPSoC system [Xiang *et al*]
  - MTTF based MPSoC reliability model based on statistical modelling [Coskun *et al*]
  - Mean Error Impact based MPSoC reliability model [Wu and Marculescu]
  - Reliability metric based system-level analysis and estimation [Zhao *et al*]







### Motivation

- Currently power and reliability estimations are carried out separately
- Since power minimization directly affects reliability, component reliability comparisons do not signify joint consideration of power and reliability
  - Which is much needed for a system where low power and high reliability are joint objectives
- Hence, a composite metric is much needed highlighting power and reliability trade-offs







### Motivation

#### [Examples of separate measurements]

| Component | Scaling         | Reliability | Power, mW |
|-----------|-----------------|-------------|-----------|
| comp1     | 66.7MHz @ 0.55V | 0.96        | 0.98      |
| comp2     | 100MHz @ 0.6V   | 0.98        | 1.96      |
| comp3     | 200MHz @ 1V     | 0.99        | 9.24      |

- *comp1* has low power but low reliability; achieved through aggressive voltage scaling
- *comp3* has high reliability at the expense of high power; no voltage scaling applied
- *comp2* has reliability of 0.98 and a power consumption of 1.98mW
- With separate power and reliability measurements, it is hard to comparatively assess the system reliability







## Contribution

- We propose a novel composite metric, called power normalized reliability (PNR)
  - Expressed as a ratio of system reliability and power
  - Aim is to highlight power and reliability trade-offs at system- and component-level
- Underpinning this metric, a novel estimation framework, reliability analysis and estimation framework (RAEF) is presented
  - For effective fault injection, analysis and estimation at various architectural hierarchies: register-level, corelevel and system-level







### **Power Normalized Reliability (PNR)**

$$PNR = \frac{R}{P} = \frac{exp\left[-\hat{\lambda}_0 \ k \ v \ t\right]}{\alpha \ C_L \ V_{dd}^2 f}$$

*R* is reliability expressed as a function of basic soft error rate  $(\lambda_o)$ , factor of soft error increase with voltage scaling (k), architectural vulnerability factor (v) and time (t)

*P* is dynamic power expressed as a function of activity factor ( $\alpha$ ), load capacitance ( $C_L$ ), supply voltage ( $V_{dd}$ ) and operating frequency (*f*)







### **Power versus PNR**



- PNR is high at lower power and low at higher power
- It varies significantly due to different activity factors







### **RAEF: Proposed Estimation Framework**



Southampton





# **Fault Injection in RAEF**



- Fault injection enabler types form a fault locations database
- Faults are injected at random times/locations based on fault policy







#### Hierarchical PNR Estimation [@ Register-level]

• PNR is estimated for each register in design specification

 $PNR_{i,c} = \frac{R_{i,c}}{P_{i,c}} = \frac{\exp\left[-g_{i,c}k_c\lambda_b t\right]}{\frac{t_{i,c}^b}{t}C_L V_{dd}^2 f}$  is reliability ( error rate ( $\lambda_b$ , per bit per unit time), factor of soft error increase with voltage scaling on *c*-th core ( $k_c$ ), size of the register ( $g_{i,c}$ ) and time (t)

 $P_{i,c}$  is dynamic power of *i*-th register in *c*-th core expressed as a function of register activity factor ( $\alpha_{i,c}$ : ratio of busy cycles,  $t^{b}_{i,c}$  and time, *t*), load capacitance ( $C_L$ ), supply voltage ( $V_{dd}$ ) and operating frequency (*f*)

**NOTE**: at this level vulnerability does not affect component reliability







#### Hierarchical PNR Estimation [@ Processing Core-level]

• At processing core-level PNR is estimated for each core as

$$PNR_{c} = \frac{R_{c}}{P_{c}} = \frac{\exp\left[-\sum_{i=1}^{G_{c}} \lambda_{i,c} \left(\Gamma_{i,c}^{V}/\Gamma_{i,c}^{A}\right)t\right]}{\frac{t_{c}^{b}}{t} C_{L} V_{dd}^{2} f}$$

 $R_c$  is reliability of *c*-th core expressed as a function of component soft error rate ( $\lambda_{i,c}$ , per bit per unit time), component vulnerability factor (*v*: ratio of visible fault,  $\Gamma_{i,c}^V$  and actual number of fault injected,  $\Gamma_{i,c}^A$ ), and time (*t*)

 $P_c$  is dynamic power of *c*-th core expressed as a function of core activity factor ( $\alpha_{i,c}$ : ratio of busy cycles,  $t^b_c$  and time, *t*), load capacitance ( $C_L$ ), supply voltage ( $V_{dd}$ ) and operating frequency (*f*) **NOTE**: At higher architectural level, vulnerability becomes important.







#### Hierarchical PNR Estimation [@ System-level]

• At system-level, PNR is estimated for the overall MPSoC system as

$$PNR = \exp\left[-\sum_{c=1}^{C} \lambda_c \left(\Gamma_c^V / \Gamma_c^A\right) t\right] / \sum_{c=1}^{C} P_c$$

Reliability of MPSoC system is expressed as a function of per core core soft error rate ( $\lambda_c$ , per bit per unit time), component vulnerability factor (*v*: ratio of visible fault per core,  $\Gamma_c^V$  and actual number of fault injected per core,  $\Gamma_c^A$ ), and time (*t*)

Overall power *is* expressed as a sum of core dynamic powers

**NOTE**: At system-level, PNR is determined by various factors including component vulnerability, activity factor and observation time.







## **Case Study: MPEG-2 Decoer**

- MPSoC with four decoder cores
- RAEF will be used to examine PNR based reliability at
  - register-level
  - core-level and
  - overall system-level.









# **PNR Estimates at Register-level**



- Longer registers have low reliability and hence lower PNR
- Registers with low activity factor have high PNR
- **COMMENT**: PNR clearly signifies the trade-off, while traditional reliability fails to do so







### **PNR Estimates at Core-level**



- Processing cores with low activity & vulnerability factor have high PNR
- **COMMENT**: At core level, reliability metric has minor variations and does not highlight power trade-off; PNR overcomes this.







#### Impact of Voltage Scaling [and activity factor]



Processing cores with low activity factor has low power and hence higher PNR; Voltage scaling significantly improves PNR

**NOTICE**: Core VLD (which has lowest overall activity factor) has the highest PNR, while core MC (which has the highest overall activity factor) has the lowest PNR







#### **PNR Estimates at System-level** [Impact of Architecture Allocations]



With higher architecture allocation, register usage increases, which also degrades core reliabilities and hence overall PNR







#### **PNR Estimates at System-level** [Difference between various applications]



Applications with higher activity factor and higher register usage had lower overall PNR; hence, MPEG-2 is outperformed by other applications shown

Southampton





### Conclusions

- Proposed PNR based estimation is highly effective
  - It highlights the comparative reliability between components, taking into consideration power and reliability jointly
- Using PNR, an analysis and estimation framework (RAEF) was shown
  - Enables PNR based insightful analysis and estimation using system-level simulation techniques
- The effectiveness of RAEF using PNR was evaluated
  - Using MPEG-2 and various other applications
  - Considering the impact of voltage scaling, architecture allocation and observation times on PNR







# **THANK YOU**





