Verilog-AMS-PAM: Verilog-AMS integrated with Parasitic-Aware Metamodels for Ultra-Fast and Layout-Accurate Mixed-Signal Design Exploration

G. Zheng¹, S. P. Mohanty², E. Kougianos³, and O. Garitselov⁴ NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3,4}

> Presenter: Geng Zheng University of North Texas Email: gengzheng@my.unt.edu

Acknowledgment: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Agenda

Motivation

Parasitics greatly impact nano-CMOS circuit designs

7

Total

612

Mixed-signal Circuit Simulation

 Mixed-signal layout simulations require great amounts of computation time and effort

Mixed-signal Systems

Linear and non-linear blocks

Parasitics

Lots of parasitic components

Effects of Parasitics

 Parasitics cause significant mismatch between schematic and layout simulations

Digital Circuit

Analog Circuit

Behavioral Model

 Marcomodeling based behavioral models can reduce simulation time but have several disadvantages

Operational Amplifier Op-amp Macromodel Bias₃ V_{OUT} V_{OUT} V_{IN} V_{Bias2} IN $-V_{Bias1}$

Macromodeling

- complexity limitation
 Not suitable for
- paracitics incorporation
- design exploration

Parasitic-Aware Metamodel

Metamodeling can overcome the disadvantages ٠

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

Case Study: PLL Optimization

 A VCO Verilog-AMS metamodel is proposed to assist fast PLL design exploration

LC VCO Polynomial Metamodel

 A polynomial metamodel is constructed for the 180 nm LC VCO

VCO Model for Design Exploration

• The linear model is not suitable for design exploration

Polynomial Metamodel $f(X) = \sum_{i=0}^{K-1} \beta_i x_1^{P_{1i}} x_2^{P_{2i}} x_3^{P_{3i}}$

VCO Transfer Curve

Linear model

$$f_{osc} = f_0 + K_{VCO} V_C$$

Verilog-AMS Integration

i	p_{1i}	p_{2i}	p_{3i}	$eta_{i,f}$	$\beta_{i,p}$
0	0,	0,	0,	2.113e+009,	1.385e-005
1	1,	0,	0,	-3.214e+012,	44.459e+000
2	2,	0,	0,	3.456e+016,	-2.804e+005
3	0,	1,	0,	6.869e+012,	39.729e+000
4	1,	1,	0,	-1.021e+017,	2.911e+005
5	0,	2,	0,	-2.071e+017,	-1.080e+006
5	0,	0,	1,	3.513e+008,	-8.271e-004
7	1,	0,	1,	-2.565e+012,	-31.282e+000
8	0,	1,	1,	-5.331e+012,	-11.392e+000
9	0,	0,	2,	0.000e+000,	1.041e-003

module vco metamodel (out, in); parameter integer K; initial begin// Initialize coefficients end always Verilog-AMS begin vc = V(in);Metamodel freq = 0;power = 0; for $(i = 1; i \le K; i = i + 1)$ begin freq = freq + bf[i] * pow(vc, pv[i]);power = power + bp[i] * pow(vc, pv[i]); end #(0.5 / freq / 10p) out = ~out: end endmodule

VCO Transfer Curves

 Quadratic polynomial metamodel is sufficient for modeling the LC VCO

PLL Behavior with VCO Metamodel

The metamodel accurately approximates the PLL behavior

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

Layout-Accurate Simulation

• The metamodel is capable of layout-accurate PLL output frequency and power dissipation estimation

Frequency

Power dissipation

Simulation Speed Comparison

 10x simulation speedup is achieved using metamodel compared to the one using layout view

Computation Time Comparison

	Layout	Schematic	Metamodel
Runtime	80.5 s	40.3 s	8.7 s
Normalized speed	$1 \times$	$\sim 2 \times$	$\sim 10 \times$

PLL Optimization

PLL Optimization Flow

Metamodel Assisted Exhaustive Search Optimization

Step #	Action		Design Space		Frequency Metamodel
			(total design counts)		\perp
1	Define design space	\rightarrow	961		f < f < f
2	Shrink design space with tuning range	\rightarrow	320		$\int min = \int = \int max$
	constraint			with Veri metamod computa 30 mins	with Vorilog AMS
3	Run AMS simulation to obtain design choices with minimized lock time	\rightarrow	5		metamodel computation time ~ 30 mins
4	Select optimal design with low-power consid- eration	\rightarrow	1	_	
5	Verify the final design with layout simulation	\rightarrow	Done	-	

Optimal VCO design

 Optimal VCO design is found using the metamodel assisted optimization algorithm

	Baseline	Optimal	Reduction
W_P/W_N (μ m/ μ m)	20 / 10	21.4 / 5	_
Lock time (ns)	335.4	320.4	15.0
$\mathbf{P}_{\mathbf{Locked}} (\mu \mathbf{W})$	602	455	147
Tuning Range (MHz)	2170-2304	2173-2321	_

Sizing the transistors for minimized lock time

Final Design Verification

• The final design is verified with layout simulation

PLL first locks to 2180 MHz and then relocks to 2300 MHz

Conclusions

A Verilog-AMS behavioral model for a 180 nm CMOS LC VCO based on a quadratic polynomial metamodel has been proposed

Using the VCO metamodel to perform fast and accurate PLL optimization has been demonstrated

The metamodel can be further improved but is sufficient for lock time and average power estimation

Parasitic-aware metamodels can be developed for the rest of the PLL building blocks

Thank You!!!

04/05/2012