STEP: A Unified Design Methodology for Secure Test and IP Core Protection

P. Yeolekar¹, R.A. Shafik¹, J. Mathew¹, D.K. Pradhan¹ and S.P. Mohanty²

¹Dept of Computer Science, University of Bristol, UK ²Dept of Computer Science and Engineering, University of North Texas, USA

> Presenter: Geng Zheng University of North Texas Email: gengzheng@my.unt.edu

Outline

- Introduction: Secure Test and IP Core Protection
- Motivations
- Contributions
- STEP: Proposed Unified Design Flow
- Results: AES Case Study
- Conclusions

Introduction

- Current IP core based design technology has two major security threats
 - Reverse engineering or response analyses during normal operation
 - Scan chain based attack during test
- Such design *hacking* is carried out to extract design information
 - For counterfeit product development
 - For inflicting financial and reputation damage

Previous Work

- To secure design during normal operation various approaches have been used
 - Combinational design locking [Roy *et al*]
 - HW obfuscation technique [Chakraborty *et al*]
 - Watermarking technique [Castilo *et al*]
- Also to secure design during test other approaches have been proposed
 - Scan chain scrambling technique [Hely *et al*]
 - Random inverter insertion [Sengar *et al*]

Motivation

- IP core protection does not guarantee secure test

 As it is possible to use scan chains to identify the response patterns and extract design
- Secure test does not ensure IP core protection

 Since it is still possible to reverse engineer or carry out response analyses
- For effective IP core protection and secure test, an unified design methodology is much needed.

Contribution

- We propose a novel unified design methodology, STEP (Secure TEst and IP Core Protection) for
 - Protecting design information during normal functionality,
 - Securing scan chains during test
- Proposed design methodology STEP uses
 - Common secure key hardware for IP protection and secure test to reduce overall system cost
 - High randomness in the design information requiring extremely high number of combinations to ensure security

STEP: Proposed Design Methodology

Case Study: AES

Secure Test Architecture

Discover the power of ideas

Case Study: AES [contd.]

IP Core Protection Architecture

Results: AES Case Study

Area overhead

Power overhead

Up to 9% area overhead

Up to 20% power overhead

Results: AES Case Study [contd.]

Test times

(a) Parallel vectors (b) Serial Vectors Up to 2% extra delay in STEP AES design

University of BRISTOL

Fault Coverage

Up to 2% higher number of test patterns required For similar fault coverage in STEP AES design

Results: AES Case Study [contd.]

Security Analyses

- Combinations required for hacking by scan chain based attack

$$C_{test} = C_N \ C_R \ C_{ff-pos} = 2^{2M} \ G \ \begin{pmatrix} S \\ N \end{pmatrix}$$

- Combinations required for hacking during normal functionality

$$C_{IP} = C_{seq} C_{\mathcal{R}} C_{ff-con} = 2^{M(k+1)} G N! \begin{pmatrix} S \\ N \end{pmatrix}$$

- N := number of dummy flops inserted := length of random key
- M := hackers guess of number of dummy flops
- R := seed of the random number in PRBS
- S := length of scan chains and G := number of scan chains
- C_N := combinations required for guessing N = 2^M
- C_R := combinations required for guessing R = 2^M

 C_{seq} := combinations required for guessing correct key sequence with k keys = 2^{kM}

 $C_{\text{ff-pos}} := \text{combinations required for flip flop positions}$

 $C_{\text{ff-con}}$:= combinations required for guessing correct flip-flop inter-connection

Conclusions

- Proposed STEP design methodology gives
 - Novel design approach for secure test and IP core protection
 - Unified key integrated hardware to reduce overall cost
- Has been validated using AES benchmark system implementations
 - To illustrate implementation details
 - To observe system costs and
 - Demonstrate the security advantage of the system

Thank you

