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Abstract

A automated top-down design flow to
achieve physical design of an AMS-SoC has
always been very difficult. The design efforts
have been further increased when the silicon
IS due to nanoscale CMOS. The various
nanoscale effects, particularly, the process
variation effects have profound effects on the
performance of the performance of silicon
versus the layout design. In this paper
metamodels (aka surrogated models) and
particle swarm optimization (PSO) have
been combined In an automated physical
design flow for fast design exploration of
AMS-SoC. The neural network based non-
polynomial metamodels that handles large
number of design parameters are used to
predict the statistical process variation
effects Instead of the exhaustive Monte
Carlo simulations over the circuit netlist.
The statistical analysis over non-polynomial
metamodels were as very fast while the error
was only 0.7%. The PSO algorithm is used
for  optimization of the AMS-SoC
components using their non-polynomial
metamodels instead of the actual circuit. The
PSO algorithm followed a two step
approach: local and global. The physical
design phase-locked loop (PLL) Is
considered as a case study circuit. The
proposed design flow Is approximately 5
times faster while the error 1s under 2%
compared to the Monte Carlo analysis.

Introduction
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that represents the circuit’s behavior within
a given range of parameters and Is derived
from sampling points.

The neural network metamodel considered
has the form:
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A metamodel Is created on a full RCLK
(resistance, capacitance, self and mutual
Inductance) parasitic extracted netlist, for
each figure of merit.

This study Is attempting to answer two
main guestions for mixed signal circuits:

How accurately can metamodels predict
process variation behavior?

«Can metamodels be used for optimization
and account for process variation?

Case Study Circuit

The proposed approach has been used on a
phase locked loop (PLL) designed in 180
nm technology. The figure below shows
PLL structure.
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Figure 1: Block diagram of a phase locked loop.
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Schematic and then physical layout Is
created for the circuit.

Figure 4: Physical Lavout of the optimized PLL.

Extracted parasitic netlist Is characterized
with a wide range for 35 parameters.
Parameters include device sizing, VDD
variation, and process variation parameters
s.a. threshold voltage and oxide thickness.

Table 2: Before Optimization: Statistical Figures of Merits of the PLL.

Circuit Monte Carlo Neural Network Monte Carlo Error
Mean (p) | Standard Deviation (o) | Mean () | Standard Deviation (o) | Mean (p) | Standard Deviation (o)
Frequency 2.66 GHz 10.95 MHz 2.66 GHz 10.96 MHz 0.0% 0.11%
Power 0.90 mW 0.21 mW 0.90 mW 0.21 mW 0.14% 1.3%
Locking Time 3.24 pus 1.07 us 3.22 us 0.99 us 0.7% 6.93%
Horizontal Jitter | 2.79 ps 1.32 ps 2.80 ps 1.32 ps 0.12% 0.5%
Vertical Jitter 0.41 mV 0.17 mV 0.41 mV 0.15 mV 0.53% 10.02%

Neural Model Verification

After successful training of the neural
model thethe accuracy of neural model for
process variation Is checked by
conducting Monte Carlo analysis of 1000
points on physical netlist and neural

Algorithm 1 Particle Swarm Optimization (PSO)

I: Set N - number of particles

Start at a random location with uniform distribution

Get current position =; and use it initially for best particle po-
sition f(p;) and f(g) = min(p;:)

vi U(ming i, mazp ;)

Initialize iter=0

Initialize weight for swarm effect p,

Initialize weight for swarm effect pp

Initialize weight for velocity effect (acceleration/inertia) w
while iter<max;icrations A0

10:  foreachido

e

e B = AR A

model. 11: v; = wv; + pTp(pi — Ti) + pg7g(g — )
12: T; +— T; + vy
13: if f(xi) < f(p:) then
14 update position: p; + x;
15: if f(p:) < f(g) then
16: q 4+ pi
17: end if
18: end if
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Figure 2: Statistical Analysis of the FoM of PLL using Actual Cir-
cuit (netlist).
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Figure 3: Statistical Analysis of the FoM of PLL using Neural Net-
work based Non-Polynomial Metamaodels.

Particle Swarm Optimization

Particle Swarm optimization algorithm is
used on the neural model to find optimal
values that are process variation resilient.

19: end for
20: end while

Algorithm 2 Cost Function f(p:) Calculation

I: Receive parameters

2: Conduct Monte Carlo 1000 points

3: Calculate freq,.freg.=frequency(u.o)

& if fregu+freqo<fregeonsirain: then

3 Calculate power,, power=power(j.s)

6 Calculate lockingtime, lockingtime =lockingtime(u,o)
. Calculate horjitter, horjitter =horjitter(y,=)

8 Normalize gp + k= o for all values

Q Return FoM=sumi{normalized values)

0

]. - end if

Conclusion

PLL circuit I1s characterized for
Frequency, Power consumption, Locking
time and horizontal jitter of the output
signal.

Optimization is conducted for:

a) L+ O

b) 1+ 30

Optimization results are shown in Table 3.

An error of under 2% has been observed
In the models for process variation
analysis for and standard deviation. Mc
analysis for 1000 simulation points for
PLL netlist took approximately 5 days In
comparison to 1 day for 200 neural
network training points. The speed up of
approx. 5X Is observed for using NN for
optimization.

Table 3: After Optimization: Statistical Figures of Merits of the PLL.

Circuit Component Parameter Name min max
DFF1 PMOS W opd 0.4 pm 2 pm
DEF1T NMOS Wopd 0.4 pm 2 pum
. ) DFF1 Length Lrpdi 180 nm | 200 nm
Phase Detectol DFF2 PMOS W, 2 04 pm | 2pm
DEFZ NMOS Wopdz 0.4 pm 2 pum
DFF2 Length Lnpdz 180 nm | 200 nm
AND PMOS Wopda 0.4 pm 2 um
AND NMOS W opda 0.4 pm 2 um
AND Length Lnpds 180 nm | 200 nm
M3, M4 Woopi 0.4 pm 2 pm
. M5, M6 WP 0.4 pm 2 pm
Charge Pump MT, M2 WoC Pz Tum | 20 um
M7, ME, M9 W,.cpo2 2 pm 20 pm
Length NMOS L.cp 180 nm | 200 nm
Length PMOS Leop 180 nm | 200 nm
. NMI1, NM2 Wa.rco 3 pm 20 pm
LC-VCO PM1. PM2 Woro 6 m 40 um
Length PMOS Lerocveo 180 nm | 200 nm
Length NMOS L.r.ov oo 180 nm | 200 nm
M3 “rn]f_]!':- 0.4 fm 2 e
M6 WnzDiv 0.4 fm 2 e
M7 Waanie 0.4 pm 2 pum
MB WoaaDiv 04 pm | 2 pmn
Dividor MO WasDiv 0.4 pm 2 pm
M1 Wi miw 0.4 pm 2 pm
M2 Woapiu 0.4 pm 2 um
M3 Wirapiv 0.4 pm 2 pm
M4 Wpapiv 0.4 pm 2 pm
Length PMOS Loon 180 nm | 200 nm
Length NMOS LoDy 180 nm | 200 nm
Oxide Thickness NMOS Tox, 2 nm 5 nm
Global Oxide Thickness PMOS Tox, 2 nm 5 nm
Threshold Voltage NMOS VI'Hpy 008V | 088V
Threshold Voltage PMOS VTHPp 003V | 083V
Supply voltage Vdd 1V 1.4V
200 training samples are used to create the

neural model. 60 samples are used for

verification.
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1+ o Optimization 1 + 3 Optimization
Mean () | Standard Deviation (o) | Mean (u) | Standard Deviation (o)
Frequency 2.75 GHz 28.64 MHz 2.74 GHz 29.14 MHz
Power 0.99 mW 0.28 mW 0.98 mW 0.27 mW
Locking Time 4.69 us 1.15 pus 4.61 us 1.13 us
Horizontal Jitter | 5.82 ps 3.42 ps 5.97 ps 3.34 ps
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