Kriging-Assisted Ultra-Fast Simulated-Annealing Optimization of a Clamped Bitline Sense Amplifier

O. Okobiah¹, S. P. Mohanty², E. Kougianos³, and O. Garitselov⁴
NanoSystem Design Laboratory (NSDL, http://nsdl.cse.unt.edu) University of North Texas, Denton, TX 76203, USA.^{1,2,3,4}
Email: oo0032@unt.edu¹, saraju.mohanty@unt.edu², eliask@unt.edu³,

and omg0006@unt.edu⁴

Presented By Oleg Garitselov University of North Texas Email: mgomathi@unt.edu

Acknowledgment: This research is supported in part by NSF awards CNS-0854182 and DUE-0942629 and SRC award P10883.

Outline of the talk

- Background and Motivation
- Related Prior Research
- Fundamentals of Kriging
- Proposed Design Optimization Flow Methodology
- CBSA and Figures of Merit
- Conclusions and Future Research Directions

Issues in NanoCMOS Design

- Expensive Computer Simulations
- Pronounced effects of process variations in deep nanometer regions
 - Increase in design parameters
 - Current modeling techniques unable to capture effects of process variation

Novel Contributions

- Design flow methodology incorporating Kriging metamodeling and simulated annealing based optimization.
- Two methods of Kriging metamodeling techniques that account for correlating effect of process parameters.

Prior Related Research

- Polynomial regression techniques
- Neural Networks
- Kriging Based Techniques
 - G.Yu --- re-iterative pareto fronts
 - H.You -- Metamodeling

Fundametals of Kriging

 Originally used in geostatistics fields for mining purposes.

$$y(\mathbf{x}_0) = \sum_{j=1}^{n} \lambda_j B_j(\mathbf{x}) + z(\mathbf{x}), \qquad (1$$

- Each point is predicted based on a set of unique weights (λ_j).
- Two methods are considered
 - Ordinary Kriging
 - Simple Kriging

Fundametals of Kriging...

Ordinary kriging weights are biased

$$\sum_{j=1} \lambda_j = 1.$$
(3)
Weighting
$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \\ \mu \end{pmatrix} = \Gamma^{-1} \begin{pmatrix} \gamma(e_1, e_0) \\ \vdots \\ \gamma(e_n, e_0) \\ 1 \end{pmatrix},$$
(4)
$$\Gamma = \begin{pmatrix} \gamma(e_1, e_1) & \cdots & \gamma(e_1, e_n) & 1 \\ \vdots & \ddots & \vdots & 1 \\ \gamma(e_n, e_1) & \cdots & \gamma(e_n, e_n) & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$
(5)

For simple kriging, eqn (5) does not have the last row and column

Proposed Design Optimization Flow

- Design netlist and parameterization
- Sampling
 Techniques
- Kriging Assisted
 Metamodel
 Generation
- Simulated Annealing Optimization Algorithm

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

8

Design and Netlist Optimization

Baseline design flow

- Baseline design (schematic and layout)
- Parameterize extracted parasitic netlist
- Identify performance objectives to be optimized.

Sampling Techniques

Sampling with LHS

- divides design space into equal number of n sample points.
- L, W used as sampling corners and process parameters are varied
- captures better representation of design space

Kriging assisted metamodels

- Metamodel for each design objective is generated
 - using mGstat (Matlab Kriging tool)
- Design objectives are functions of design parameters

$$\Box \quad \Theta. \qquad \widehat{Y}_{pr}\left(W_{n}^{*}\right) = \sum_{i=1}^{N} \lambda\left(W_{n}^{*}\right)_{i} Y_{pr}\left(W_{n_{i}}\right), \qquad (7)$$

Simulated Annealing based optimization algorithm

- Kriging based metamodels optimized with SA algorithm
- Conflicting design objectives used as optimization goal and constraint.

CBSA:Case Study Circuit

 MP_1 , MP_2 , MN_1 and MN_2 form cross-coupled inverters.

- VCL clamps bitlines to reduce capacitive effect.
- MN3 and MN4 provide low impedance.

CBSA:Case Study Circuit

CBSA: Figure of Merits

- Precharge time
 - Time required to setup bitlines
- Sense Delay
 - Time required for sufficient voltage to appear on bitlines
- Power Consumption
 - Average power consumption (including dynamic, subthreshold and leakage power)
- Sense Margin
 - Amount of sufficient voltage required for correct read or write

Functional simulation of CBSA

Design	Precharge time, T _{PC} (ns)	Sense delay, T _{sD} (ns)	Power, P _{SA} (μW)	Sense Margin, V _{SM} (mV)	Area (µm2)
Schematic	10.31	1.79	1.84	26.91	-
Layout	10.40	1.91	1.88	26.86	6.045
01/11/2012	Палоб Палоб С	ystem Dezign aboratory	UNIVERSITY OF NORTH Discover the power of i	I TEXAS deas	16

Setup and Tools Interaction

Kriging predicted metamodels (ordinary)

(a) Ordinary Kriging for precharge time

(b) Ordinary Kriging for sense delay

(c) Ordinary Kriging for average power

Ordinary Kriging Predicted Sense Margin 28.4 ordinary krigin exhaustive 28.2 28 (ALL) 27.8 27.6 27.4 27.2 27 120 140 160 200 220 240 180 Wn (nM)

(d) Ordinary Kriging for sense margin

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

01/11/2012

Kriging predicted metamodels (simple)

(a) Simple Kriging Predicted for Precharge time

(d) Simple Kriging Predicted for Sense Margin

01/11/2012

Accuracy and Validation

STATISTICAL ANALYSIS OF THE KRIGING PREDICTED VALUES.

FoMs	Ordinary Kriging		Simple Kriging				
Samples	20	100	20	100			
Precharge							
MSE	6.02×10^{-21}	3.85×10^{-19}	5.32×10^{-21}	3.63×10^{-19}			
RMSE	7.76×10^{-11}	6.20×10^{-10}	7.29×10^{-11}	6.02×10^{-10}			
R^2	0.9931	0.5560	0.9939	0.5810			
STD	6.95×10^{-11}	6.09×10^{-10}	6.60×10^{-11}	5.91×10^{-10}			
Sense Delay							
MSE	1.12×10^{-23}	8.27×10^{-24}	7.49×10^{-24}	4.02×10^{-24}			
RMSE	1.02×10^{-10}	2.88×10^{-12}	2.73×10^{-12}	2.00×10^{-12}			
R^2	0.9984	0.9985	0.9987	0.9993			
STD	8.62×10^{-11}	2.64×10^{-12}	2.29×10^{-12}	1.79×10^{-12}			
Power							
MSE	3.64×10^{-15}	4.35×10^{-15}	3.56×10^{-15}	4.69×10^{-15}			
RMSE	6.24×10^{-11}	6.60×10^{-08}	5.96×10^{-08}	6.85×10^{-08}			
R^2	0.9957	0.8145	0.8486	0.8003			
STD	5.75×10^{-11}	6.40×10^{-08}	5.69×10^{-08}	6.66×10^{-08}			
Sense Margin							
MSE	2.79×10^{-09}	6.31×10^{-09}	2.56×10^{-09}	4.32×10^{-09}			
RMSE	5.28×10^{-05}	7.94×10^{-05}	5.06×10^{-05}	6.57×10^{-05}			
R^2	0.9987	0.9753	0.9900	0.9831			
STD	2.58×10^{-05}	7.73×10^{-05}	4.79×10^{-05}	6.41×10^{-05}			

Design Optimization

Algorithm 1 Simulated-Annealing Based Optimization of the Clamped-Bitline Sense Amplifier.

- 1: Initialize iteration counter: counter $\leftarrow 0$.
- 2: Initialize temperature Θ .
- 3: Initialize Cooling Rate.
- 4: Start with an initial solution \widehat{CBSA}_i .
- 5: Calculate the FoMs for CBSA_i using the Kriging models.
- 6: Consider the objective of interest T_{PC_4} .
- 7: $result \leftarrow \Delta_{T_{PC}} \leftarrow T_{PC_4}$.
- 8: while $(\Delta_{T_{PC}}! = 0)$ do
- $counter \leftarrow max_Iteration.$ 9:
- while (counter > 0) do 10:
- Generate random transition from solution \widehat{CBSA}_i to 11: $CBSA_{i}$.
- Calculate the FoMs for \widehat{CBSA}_i using the Kriging 12: models.
- if $(T_{PC_i} < result)$ then 13:

15:
$$CBSA_i \leftarrow CI$$

16: else

17:
$$\Delta_{T_{PC}} \leftarrow T_{PC_i} - T_{PC_j}$$
.
18: if $(\Delta_{T_{PC}} < 0, \operatorname{random}(0,1) < e^{\frac{\Delta_{T_{PC}}}{T}})$ then
19: $T_{PC_i} \leftarrow T_{PC_j}$.
20: $\widehat{CBSA_i} \leftarrow \widehat{CBSA_j}$.
21: end if
22: end if
23: counter \leftarrow counter -1 .
24: end while
25: $\Theta \leftarrow \Theta \times Cooling Rate$

- $\Theta \times Cooling_Rate.$
- 26: end while
- 27: return result and \widehat{CBSA}_i .

01/11/2012

Optimal Simulation Results

Design	Precharge time, T _{PC} (ns)	Sense delay, T _{SD} (ns)	Power, P _{SA} (µW)	Sense Margin, V _{SM} (mV)	Area (µm2)
Schematic	10.31	1.79	1.84	26.91	-
Layout	10.40	1.91	1.88	26.86	6.045
Optimized	8.16	1.68	1.98	28.03	6.356
Change	21.54%	12.04%	-5.32%	-4.36%	5.15%

Conclusions

- A novel design flow methodology incorporating Kriging metamodeling and simulated annealing based optimization algorithm was presented
- Two forms of Kriging prediction were explored.
- Optimized FoM (T_{PC}) by 21.54%
- Current techniques will be extended to high dimension parameters and multi objective optimization.

Thank you !!!

01/11/2012