A Combined DOE-ILP Based Power and Read Stability Optimization in Nano-CMOS SRAM

G. Thakral, S. P. Mohanty and D. Ghai Dept. of Comp. Science & Engineering University of North Texas, USA. Email: saraju.mohanty@unt.edu Dhiraj K. Pradhan Dept of Computer Science University of Bristol, UK. Email: pradhan@compsci.bristol.ac.uk

Acknowledgment: This research is supported in part by NSF award numbers CCF- 0702361 and CNS-0854182.

Outline of the talk

- Introduction
- Problem Statement: How to decrease power while maintaining performance of SRAM?
- > Solutions: Assigning high/low V_{th} to transistors
- > Proposed Optimal SRAM Design Flows
- > Experimental Results: Nominal an Monte Carlo
- > Related Prior Research
- Conclusions and Future Research

Why Efficient SRAM Design?

Cache (MB)

130nm

130nm

65nm

- Amount of on-die caches increases
- Up to 60% of the die area is devoted for caches in typical processor and embedded application.
- Largely contributes for leakage and power density.

Issues in Nano CMOS

Nano-CMOS SRAM Design Challenges ...

In nano-CMOS regime following are the major issues:

- Data stability and functionality
 - Non-destructive read
 - Successful write
 - Noise sensitivity
- Proper sizing of the transistors
 - To improve the write ability
 - To improve the read stability
 - To improve the data retention
- Minimum size of transistors to maximize the memory density.
- Minimum leakage for low-power design.
- Minimum read access time to improve the performance.

6transistor-SRAM

Nano-CMOS SRAM Design Challenges

- For proper read stability: N1 and N2 are sized wider than N3 and N4.
- For successful write: N3 and N4 are sized wider than P1 and P2.
- Minimum sized transistors do not provide good stability and functionality.
- SRAM cell ratio (β): ratio of driver transistor's W/L to access transistor's W/L.

Single-Ended 7-Transistor SRAM

Highlights of this SRAM:

Single-ended I/O latch style 7transistor SRAM.

Functions in ultra-low voltage regime allowing subthreshold operation.

Better read stability, better writeability compared to standard SRAM.

Improved nanoscale process variation tolerance compared to the standard 6-transistor SRAM.

Source: Our publication in SOCC 2008

Research Question

How to reduce power dissipation while maintaining/enhancing stability of SRAM.

The Solution Explored in This Paper

- To reduce the power consumption this research investigates the process level technique, called dual-V_{th}.
- Important is the selection of appropriate transistors for high-Vth assignment so that performance of SRAM is not degraded.
- SRAM is subjected to the dual-V_{th} assignment using a novel combines Design of Experiments-Integer Linear Programming (DOE-ILP) algorithms.

Stability Analysis of SRAM: SNM

 Static Noise Margin (SNM): It is the amount of maximum DC voltage (Vn) in this case, that SRAM can tolerate.

Currents in 7-Transistor SRAM: Write

Currents in 7-Transistor SRAM: Read

Combined DOE-ILP Approach

- Design of Experiments (DOE) consists of purposeful changes of inputs (factors) to a process in order to observe the corresponding changes in the outputs (responses).
- Integer linear programming (ILP) is a technique for optimization of a linear objective function, subject to linear equality and linear inequality constraints. ILP determines the way to achieve the best outcome (such as maximum profit or lowest cost) in a given mathematical model and given some list of requirements represented as linear equations.

Combined DOE-ILP Approach: Solution 1

1: Input: Baselinecircuit, Nominal/Hgh-VTh models.

- 2: Output ObjectivesetSobj=[fpwr, fsnm] withtransistors identified for high VTh assignment
- 3: Setupexperimentfor transistors of SRAM cell using 2-Level Taguchi L-8array, where the factors are the transistors and the responses are average Psram and read SNMsram.

4: for Each1:8 experiment of 2-Level Taguchi L-8 array do

5: Perfom simulation and record Psram and SNMsram

6: end for

7: Form predictive equations \hat{f}_{PWR} for power, \hat{f}_{SNM} for SNM.

8: Solvefpwr using ILP. Solutionset: Spwr

9: Solve fsnm using ILP. Solutionset: Ssnm

10: Form $S_{OBJ} = S_{PWR} \bigcap S_{SNM}$

11: Assign high V_{Th} to transisors based on SOBL

Algorithm -1

DOE Predictive Equations

$$\hat{f} = \overline{f} + \sum_{n=1}^{7} \left(\frac{\Delta(n)}{2} \times x_n \right),$$

Where:

- X_n is the V_{Th} -state of transistor of nth transistor;
- \hat{f} is the response of the transistor; (e.g. Power, SNM)
- $\left(\frac{\Delta(n)}{2}\right)$ is the half-effect of the nth transistor ;

Combined DOE-ILP Approach: Solution 2

Design Flow-2

1: Input: Baseline circuit, Nominal/High - VTh models.

- 2: Output: Objective set Sobj * = [fpwr *, fsnm*] with transistors identified for high VTh assignment
- 3: Setup experiment for transistors of SRAM cell using 2-Level Taguchi L-8 array, where the factors are the transistors and the responses

are average Psram and read SNMsram.

4: for Each1:8 experiments of 2-Level TaguchiL-8 array do

5: Perform simulations and record Psram and SNMsram.

6: end for

7: Form normalized predictive equations: \hat{f}_{PWR} * and \hat{f}_{SNM} *.

8: Form
$$\hat{f}_{OBJ}^* = \left(\frac{\hat{f}_{PWR}^*}{\hat{f}_{SNM}^*}\right)$$

9: Solve \hat{f}_{OBJ} *= using ILP. Solution set: Sobj*.

10: Assign high V_{Th} to transistors based on S_{OBJ} *.

Algorithm - 2

Selection of Appropriate Transistors

Configuration for flow 1

Configuration for flow 2

Experimental Results: 4 Alternatives

Design Alternative	Parameter	Value	Change
Baseline	P sram	203.6 nW	-
	SNM sram	170mV	-
Spwr	P_{sram}	26.34 nW	87.1%decrease
	SNM sram	231.9 mV	26.7%increase
Ssnm	P sram	113.6 nW	44.2%decrease
	SNM sram	303.3 mV	43.9%increase
Sobj	Psram	113.6 nW	44.2%decrease
Approach 1	SNM sram	303.3 mV	43.9%increase
Sobj *	P sram	100.5 nW	50.6%decrease
Approach 2	SNM sram	303.3 mV	43.9%increase

Experimental Results: SNM

UNIVERSITY OF NORTH TEXAS Discover the power of ideas

Experimental Results: Power/SNM

Monte-Carlo Distribution Results . . .

Monte Carlo Simulation Results

Optimization	Parameter	Mean	Standard deviation
Spwr	P sram	28.91 nW	8.26 nW
	SNM sram	180 mV	30 mV
S snm	P sram	147.73 nW	101.4 nW
	SNM sram	295 mV	28 mV
SOBJ : Approach1	P sram	147.73 nW	101.4 nW
	SNM sram	295 mV	28 mV
SOBJ : Approach2	P sram	135.24 nW	101.85 nW
	SNM sram	295 mV	28 mV

Conclusions

- A methodology for simultaneous optimization of SRAM power and read stability is presented.
- A 45nm single ended seven transistor SRAM was subjected to the proposed methodology (novel DOE-ILP algorithms) leading to 50.6% power reduction and 43.9% increase in read stability (read SNM).
- The effect of process variation of twelve process parameters on the SRAM is evaluated, and it is found to be process variation tolerant.
- A 8×8 array has been constructed using the optimized cells whose average power consumption is 4.5μ W.

Future Research

- Future research will involve SRAM-array optimization where variability will be accounted in flow.
- Along with the states of transistors, the sizes will also be considered which will increase the solution space of the algorithms.
- In addition to the power, performance and process variation, thermal effects will also be taken into account.

Thank you!!