A P4VT (Power-Performance-Process -Parasitic-Voltage-Temperature) Aware Dual-V_{Th} Nano-CMOS VCO

Saraju P. Mohanty, Dhruva Ghai and Elias Kougianos VLSI Design and CAD Laboratory (VDCL) University of North Texas Email: {saraju.mohanty, dvg0010, eliask}@unt.edu

Acknowledgment: This research is supported in part by NSF award numbers CCF-0702361 and CNS-0854182, and SRC award number P10883.

Outline of the Talk

- Introduction
- Novel Contributions of this paper
- Related Prior Research
- Proposed Novel P4VT Aware Design Flow
- Logical Design of VCO
- PVT Variation Analysis of VCO
- P4VT Optimization of VCO
- Conclusions and Future Research

Introduction ...

- Power-Performance: Radio Frequency Integrated Circuits (RFICs) must be simultaneously:
 - Low power consuming
 - High performance

Process-Voltage: Impact of process and supply voltage variations on the performance factors of a design is much higher for nanometer technologies.

Introduction

- Parasitics: In high frequency application circuits, the exact performance prediction is challenging due to many parasitic effects. It is crucial to be able to account parasitic effects for accurate performance.
- Temperature: There is a need for temperature-aware design methodologies in order to produce properly functioning and reliable silicon.

Novel Contributions of This Paper

- A Power-Performance-Parasitic-Process-Voltage-Temperature (called P4VT) aware optimization flow for nanoscale CMOS analog circuits is introduced.
- The design of a P4VT-aware RF nano-CMOS circuit, VCO is discussed.
- For power optimization of the VCO, a dualthreshold process level technique is discussed.
- A dual-threshold physical design of the optimized VCO is presented.

Prior Research: VCO Design

Research	Tech. Node	Performance	Power	Area
Tiebout et al.	250nm	1.8GHz	20mW	1.1mm ²
Troedsson et al.	250nm	2.4GHz	5.5mW	0.874µm²
Long et al.	180nm	2.4GHz	1.8mW	-
Kwok et al.	180nm	1.4GHz	1.46mW	0.76mm ²
This Paper	90nm Dual- <i>V_{Th}</i>	2.4GHz	137.5µW	547.7µm²

Prior Research: PVT Tolerance

- Kim 2009: PVT-tolerance using supply/bodybias voltage generation.
- Charan 2008: Corner analysis used for PVTtolerant humidity sensor.
- Miyashita 2005: Automatic amplitude control is used to reduce PVT variation in LC-VCO.
- Kondou 2007: Two on-chip digital calibration circuits are used for PVT-tolerant PLL.

Prior Research: Parasitic Tolerance

- Park 2003: Parasitic-Aware optimization of CMOS wideband amplifier.
- Choi 2006: Simulated annealing optimization for parasitic-aware RF power amplifier.
- Choi 2003: Particle swarm optimization techniques for parasitic-aware CMOS RF circuits.

Proposed Novel P4VT Aware Design Flow ...

- Logical design performed to meet the specifications.
- Preliminary physical layout subjected to DRC/LVS/RCLK.
- RCLK extracted physical design / is subjected to process, voltage and temperature variation analysis.
- Dual-threshold assignment (HV_{Thn}, HV_{Thp}) to the power-hungry transistors of the VCO.

Proposed Novel P4VT Aware Design Flow

- Parasitic netlist is parameterized for parameter set D (widths of transistors and HV_{Thn}, HV_{Thp}).
- Parameterized netlist is subjected to optimization for *worst case PVT* variations.
- Parameter values for which the specifications are met are determined.
- Final physical design of the VCO is performed using these parameter values.

Center Frequency (f₀) vs. Temperature

Non-Optimized VCO

P4VT Optimized VCO

Logical Design of 90nm CMOS VCO

Current starved VCO design performed using 90nm process. Following equations are used:

$$f_0 = \frac{I_D}{N^* C_{tot}^* V_{DD}}$$
$$C_{tot} = \frac{5}{2} C_{ox} (W_p L_p + W_n L_n)$$
$$C_{ox} = \frac{\varepsilon_{r_{ox}} \varepsilon_0}{T_{ox}}$$

V_{DD}: supply voltage, I_D: current flowing through inverter, N: odd number of inverters, C_{tot}: total capacitance of each inverter stage, C_{ox}: gate oxide capacitance per unit area.

Logical Design of 90nm CMOS VCO

For a target oscillation frequency $(f_0) \ge 2$ GHz for 90nm node:

- {Wp, Lp}: inverter PMOS width (500nm) and length (100nm).
- {Wn, Ln}: inverter NMOS width (250nm) and length (100nm)
- {Wpcs, Lpcs}: current starved PMOS width (5um) and length (100nm)
- {Wncs, Lncs}: current starved NMOS width (500nm) and length (100nm).

Logical Design of 90nm CMOS VCO

PVT Variation Analysis of VCO

- Process-voltage variation analysis has been carried out on the initial physical design with parasitics (RLCK) extracted netlist.
- Monte Carlo simulation for 1000 runs performed for variation in 5 parameters:
 - □ V_{DD}: Supply voltage
 - □ V_{Thn}: NMOS threshold voltage
 - □ V_{Thp}: PMOS threshold voltage
 - **Toxn: NMOS gate oxide thickness**
 - Toxp: PMOS gate oxide thickness.

• for temperatures = 27° C, 50° C, 75° C, 100° C, 125° C.

Discover the power of ideas

1/6/2010

PVT Variation Analysis of VCO

- The worst-case process variation is where V_{Thn} , V_{Thp} , Toxn, Toxp) are increased by 10%.
- The worst-case voltage variation is where VDD is reduced by 10%.
- The worst-case temperature variation is 125°C.

P4VT Optimization of VCO

- Logical design center frequency $f_0 \ge 2$ GHz.
- Preliminary physical design center frequency $f_{0p} = 1.56$ GHz (25% degradation).
- Preliminary physical design center frequency in *worst case PVT* conditions $f_{0pvt} =$ 1 GHz (50% degradation).
- Initial average power consumption (including leakage) $(P_{VCO}) = 164.5 \mu W.$

Daramatar	Initial	Initial	Final
Falameter			
	Physical	Physical	Physical
	Design	Design	Design
		+ Process	+ Process
		Variation	Variation
f_0	1.56GHz	1.13GHz	1.98GHz
discrepancy	25%	43.5%	1%
V_{DD}	1.2V	1.08V	1.08V
	(nominal)	(-10%)	
V_{tn}	0.1692662V	0.186193V	0.186193V
	(nominal)	(+10%)	
V_{tp}	-0.1359511V	-0.149546V	-0.149546V
	(nominal)	(+10%)	
T_{oxn}	2.33nm	2.563nm	2.563nm
	(nominal)	(+10%)	
T_{oxp}	2.48nm	2.728nm	2.728nm
	(nominal)	(+10%)	

Dual-Threshold Assignment in VCO ...

- Average power consumed by all the transistors is measured.
- Input stage transistors (shown by solid circles) consume 48% of total average power of the VCO circuit.
- Most suitable candidates for higher threshold voltage assignment (HV_{Thn}, HV_{Thp}) .

Dual-Threshold Assignment in VCO

- The buffer stage transistors (shown by dashed circles) consume 11.5% of the total average power.
- May be treated to higher threshold voltage, for further power minimization.
- Input stage transistors follow high threshold model file, other transistors follow baseline model file.

Power-Performance Optimization in VCO ...

- The parasitic aware netlist generated from the preliminary layout is parameterized with respect to the optimization parameter set D, which includes:
 - Widths of PMOS and NMOS devices in the inverter (Wn,Wp),
 - Widths of PMOS and NMOS devices in the current-starved circuitry (Wncs,Wpcs),
 - \Box HV_{Thn}, HV_{Thp}.

Power-Performance Optimization

- The parameterized netlist is subjected to power-performance optimization using a conjugate gradient method.
- Our objective set are $f_0 \ge 2GHz$, and $P_{VCO} = minimum$.
- S is the stopping criteria for the optimization to stop when the objective set is within ±ε.
- \bullet ϵ is a designer specified error percentage.

One Optimization Algorithm

- **Input:** Parasitic aware netlist, Baseline model file, High threshold model file, Objective set $F = [f_0, P_{VCO}]$, Stopping criteria *S*, parameter set $D = [Wn, Wp, Wncs, Wpcs, HV_{Thn}, HV_{Thp}]$, Lower design constraint C_{low} , Upper design constraint C_{up} .
- **Output:** Optimized objective set F_{opt} , Optimal parameter set D_{opt} for $S \le \pm \varepsilon$, {where $\varepsilon = 10\%$ }.
- Perform first iteration with initial guess of D.
- while $(C_{low} < D < C_{up})$ do
- Using conjugate gradient, generate $D' = D \pm \Delta D$ in the direction of travel of $F_{opt} \pm \varepsilon$.
- Compute objective set $F(D') = [f_0, P_{VCO}].$
- Compute *S* as the difference of target objective set and current objective set.
- **if** $S \le \varepsilon$ **then**

{stopping criteria is within the error margin}

- return $D_{opt} = D'$.
- end if
- end while
- Using D_{opt} , construct final physical design and simulate.
- Record \vec{F}_{opt} accounting the full-blown parasitics.

Optimization Results

- Target center frequency $f_0 \ge 2GHz$.
- Final Physical design center frequency $f_{0p} = 2.4$ GHz.
- Final Physical design center frequency in a worst case PVT conditions $f_{0pvt} = 1.8$ GHz (10% discrepancy).
- Final average power consumption (including leakage) $(P_{VCO}) = 137.5 \mu W$ (16.4% reduction).

D	Clow	C _{up}	D _{opt}
Wn	200nm	500nm	390nm
Wp	400nm	1µm	445nm
Wncs	1µm	50µm	10µm
Wpcs	5µm	50µm	30µm
Toxpth	0.1692662V	0.5V	0.5V
Toxnth	-0.5V	-0.1359511V	-0.4975V

P4VT Optimal Dual-Threshold VCO Circuit

P4VT Optimal Dual-Threshold VCO Layout

	Second Second
	and the second se

Mohanty 25

P4VT-Aware Performance of VCO

Parameter	Value
Technology	90nm CMOS $1P$ $9M$
Supply Voltage (V_{DD})	1.2V
Center frequency	2.4GHz
(Nominal PVT)	
Worst case PVT	V_{Th} (+10%), T_{ox} (+10%),
	V_{DD} (-10%), 125°C
Center frequency	1.8GHz
(worst case PVT)	
Parameter	$6 (W_n, W_p, W_{ncs}, W_{pcs},$
set	$HV_{Thn}, HV_{Thp})$
Number of	$2 (f_0 \ge 2GHz,$
objectives	$P_{VCO}=minimum)$
Area occupied	$547.74 \mu m^2$ (58.3% penalty)

Summary and Conclusions ...

- Design of a Power-Performance-Parasitic-Process-Voltage-Temperature (P4VT) optimal nano-CMOS VCO is proposed.
- The presented design flow is used on top of existing physical design tools.
- The center frequency treated as the target specification.
- The degradation of the center frequency due to worstcase PVT effects narrowed down from 50% to 10%.

Summary and Conclusions

- 16.4% power minimization is achieved using dualthreshold technique.
- The end product of the proposed design flow is a P4VT optimal dual-threshold VCO physical design that meets the functional specifications across entire temperature range.
- For future research, we plan to incorporate additional performance criteria to the optimization set, such as phase noise.

Thank you