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Introduction

« Static Random Access Memories arrays are widely used as
cache memory in microprocessors and application-specific
integrated circuits occupy a significant portion of the die
area.

In January 2010, a leading edge IC contained
approximately 2 billion transistors.

« The process technology scaling and push for better
performance enabled embedding of millions of SRAM cells
iInto contemporary Integrated Circuits (ICs).

* In an attempt to optimize the power
consumption/performance/cost ratio of such chips,
designers are faced with a dilemma.
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Motivation For SRAM Research

 Millions of minimum-size SRAM cells are tightly packed

e Such areas on the chip can be especially susceptible and
sensitive to manufacturing defects and process variations.
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Challenges: A Glimpse

Transistor density
trends with scaling: 6T
SRAM cell vs. 4T logic

gate

Area trends with

scaling: 6T SRAM cell
area vs. a 4T logic

gate
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Source: Process-Aware SRAM Design and Test. Authors:Andrei Paviov & Manoj Sachdev
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Design Challenges for SRAM
Why Low Power?
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Related Research: SRAM

e Optimization Performance Number of
Technique (SNM) Transistors

| Amelifard | puakvt | 535% | 438% 1 6
(2006) and dual-Tox decrease increase
Modeling 160mV
Agrawal et
| al (2006) i P i ] 5 1 ©
pproach (approx.)
. Write bitline 5nW
Lin et al -
. —| balancing = - 310 mV - 9
(2008) circuitry (standby)
| okumura et Column Line i | 360 mv 10
al (2009) | Assist ] m
Scheme
. DOE-ILP
| This research Assisted | ?14'5 nW 295 mV
2010 1 Coniuaate- 86% decrease - ) - 10
(2010) Gr; diqent (Total Power) 8% increase
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Contributions of This Paper

A novel design flow is proposed for power minimization
and stability maximization in nano-CMOS SRAM circuits.

A high-k/metal-gate 32nm 10-transistor SRAM is
subjected to this methodology to show it's effectiveness.

A novel DOE-ILP based approach is proposed for power
minimization in a SRAM circuit.

A conjugate-gradient based algorithm is proposed for
SNM maximization of the SRAM.

Process variation analysis for robustness to study the
SRAM.

An 8 x 8 array is constructed using optimal SRAM cells.
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High-K based 10-TRANSISTOR SRAM

Highlights of 10T SRAM
Wiite I | Red « Two inverters connected back to
PMOS PMOS | i i .
# 3 ﬂ‘ 5 back in a closed loop fashion in

NMOS

order to store the 1-bit information

Dataln| Q Qb Q Data Out

PMOS
L]

*Three transmission gates read,
write and hold states, instead of
Read access transistors used in the
traditional 6-transistor SRAM

=
=
o
7
=
=
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*Transmission gates carefully
input and output the data to/ from
the cell node Q at full logic level.

*This provide full swing during
write and read operation.
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High-K NANO-CMOS SRAM
Models

For the design and simulation of SRAM presented in this
research, a 32nm high-k/metal-gate CMOS PTM is used.
For the PTM based on BSIM4/5, two methods are adopted:

- The model parameter in the model file that denotes relative
permittivity (EPSROX) is changed.

- The equivalent oxide thickness (EOT) for the dielectric under
consideration is calculated.

- The total power of a nano-CMOS circuit is defined as:

Ptotal = denamic + Psubthresho Id

- The use of high-k metal-gate technology eliminates the
gate leakage in SRAM.
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Operations of Proposed SRAM
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Proposed Flow for Optimal Design of High-K
NANO-CMOS SRAM

X Baseline /
SEAM cellﬁi

Logical
design
loop

-Dual-V;, voltage technique
has strong impact on power foamoaas
dissipation and SNM of the |
SRAM.  Measure Baselin: SNM, Power |

specifications

High—threshol Using combined DOE-ILP approach,
model file identify dual V4, minimum power configuration

¢ Th iS iS pe rfO rm ed USi ng a Parameterize minimum power configuration

for parameter set D, where

DO E-I L P based a pp roaCh D ={W, L of load, driver and access transistors}

|

Using conjugate gradient method

|

. . generate D+/— &D
* ILP is used to the linear hamst]
equations which ensures |
minimum power SRAM Ce” /Speciﬂcations/ specifications HE =21
configuration.
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Proposed Flow for Optimal Design of
High-K NANO-CMOS SRAM contd...

 However, this results in degradation in the stability
(SNM) of the SRAM.

* To improve the stability of the SRAM, the minimum-
power configuration SRAM is subjected to the conjugate-
gradient based optimization loop for SNM maximization

* The parameter set for optimization includes the widths
and lengths of the access, load and driver transistors of
the SRAM cell.

* The output of this optimization loop is a highly stable
SRAM cell, which consumes minimum power and better
performance
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Optimization methodologies
for 10-Transistor SRAM

UNT w fe?ple g % UI'Ii‘I.-’L‘l’Hi[“:_.-' of 14

s g ‘ " r
R ERCE T 3 toboratory K18 LU0




DOE-ILP Approach for Minimum
Power/Leakage Configuration

- Approach that uses both DOE and ILP is deployed for
power minimization of the SRAM.

* Design of Experiments based approach is implemented
using a 2-Level Taguchi L-12 array.

* The factors are the V7, states of 10 transistors of the
SRAM cell, and the response under consideration is the
average power consumption of the cell (fogpap)-
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DOE-ILP Approach contd...

| (8(n)j (avg(+1)—avg(—1))
Equation: | —— | =
2 2
where: (@j IS the half effect of nth transistor

avg(+1) avg power when transistor n is in high-V,, state.
avg(-1) avg power when transistor n is in low-V,, state.

« Using other methods like full factorial would take
210 = 1024 runs, whereas the L-12 Taguchi array
requires 12 runs.
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DOE-ILP Approach for Minimum
Power/Leakage Configuration

contd...
Results of baseline SRAM

P SRAM
SNMczns 271 mV
Minimum power

: configuration results
:If %10 :
NS % P<ram 314.5 nW

- SNM,,0, 230.4 mV
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Conjugate-gradient approach

Input: Minimum power configuration SRAM, Baseline model file, High-

threshold model file, Objective Set F =[SNMgram: Psraml:

Stopping Criteria S, parameter set D =[W, L, W4, L,q, Wy, Lpa

W._., L,.], Lower parameter constraint C,,,,,

Upper parameter constraint C,
Output: Optimized objective set F

S<zt B.{1% =< B=5%}

Run initial simulation with initial guess of D.
while (C,, <D <C,)do

Use Conjugate gradient method to generate new set of parameters

D'=DzxAD

Compute F = [SNMggrams Psraml-

if (S<z [)then

return D, =D".

Optlmal parameter set D, for

opt’ opt

end if
end while
Using D, simulate the optimal SRAM.
Record F,, for the optimal SRAM.
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Conjugate-gradient approach...

Voltage on Qb—node (V)

0 0.1 02 0.3 04 0.5 0.6 07
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Optimization Results for
Power, Performance and
Process Variation

UNT  2nspLe

NanoSystem Derign

sity of 20
m laboratory T RISTOL




SRAM results after Optimization

Peran 314.5 nW

SNM.p,1, 295 mV
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Process Variation for 10T SRAM

2 e | e
. ST N 1 .l Ju=34771n
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Voltage on Q-node (V) SRAM Static Noise Margin (V) SRAM Average Power (Log scale)
Effect of process Distribution of “High Distribution of average
variation on the butterfly  gNM” and “Low SNM” power of SRAM
curve of SRAM
SNM High 330.7 71.9
SNM Low 290.3 12.7
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Array organization for 10T
SRAM
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* As per the design flow, an 8 x 8 array is constructed using
the optimized cell

* The average power consumption of the array is 1.2 yW
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Conclusions and Future Work

« A methodology is presented for cell-level optimization of
SRAM power and stability.

* A 32nm high-k metal gate 10-transistor SRAM is subjected to
the proposed methodology which has shown 86% reduction in
power and 8% increase in SNM.

* A novel DOE-ILP approach has been used for power
minimization, and conjugate gradient method is used for SNM
maximization.
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Conclusions and Future Work ...

* The effect of process variation of 12 parameters on
the proposed SRAM is evaluated.

A8 x 8 array has been constructed using the
optimized cell and data for power and read static noise
margin is presented.

* The future scope of this research involves array-level
optimization of SRAM.

 For array optimization, both mismatch and process
variation will be considered as part of the design flow.
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