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Introduction and Motivation
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Introduction: Why NoC?

- Network on Chip
Next Gen Interconnect
GALS Approach

- Advantages
High Bandwidth
Scalable
Extensible

o Disadvantages 48 Core Chip from Intel

Power Hungry Uses 24 Node Mesh
Network on Chip

Dual-core SCC Tile
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NoC: Structure
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« NoC consists of routers, links and core- "Routing = |
. +Virtual Channel Allocation
network interfaces (CNI). -Switch Arbitration
 Routers are responsible for routing
communication between the different parts. : : _ _ _
The CNI provides an interface for the IP | Flit ====Flit = Flit = Flit = Flit

cores to the NoC.
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NoC: Salient Features

Buffer size, type and allocation policy play an
important role in the performance and efficiency
of a NoC router.

Buffers can consume as much as up to 79% of
NoC router power.

Buffer utilization in NoC router is dependent on
network congestion.

Depending on communication pattern of an
application a buffer utilization of a router varies
over time.
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Chip Power Breakdown

Crossbar
5%

NoC Consumes about 35%
Out of which 22% is buffer
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Traffic and Buffer Utilization
8 5

Traffic Types By Volume Buffer Utilization by Position
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[ Althouah Peak utilization is high, Averaaqge utilization is much lower. J
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Types of NoC Buffers

First-In-First-Out (FIFO) registers.

Static random access memory (SRAM)
based buffers.
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NoC Buffers: SRAM Advantages

Nanoscale SRAM buffers are suitable for
NoC router design because of their speed,
density and reliability.
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Motivation for this Research

Efficient buffer management is necessary to
ensure high performance and low power.

Power dissipation characteristics of nanoscale
SRAMs are unique and hence traditional low

power design techniques are not sufficient to
ensure minimum power operation.
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Contributions of this paper
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|deal

Can the knowledge of traffic be utilized to
minimize the buffer requirement?

Yes, because burst modes can be detected
easily.

How to minimize the buffer requirement?

By dynamically resizing the buffers to required
size.
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The Contributions

A feedback controlled block-level Dbuffer
management is proposed for power management.

An adaptive controller for efficient flit-level power
management is proposed.

Both  power management techniques are
thoroughly evaluated for performance.

Results outperform static allocation by 21%
increase in throughput and 20% reduction in
energy consumption.
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Related Prior Research
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Prior Research

There have been significant research on router
buffer power management for low power.

Both circuit level and system level techniques
have been proposed for NoC power
management.

Detail discussion on existing research is
available in Simunic-DATE2002, Banerjee-
NoCSymposium2007, Ogras-CODES2005.
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Prior Research ...

Zhang et al. GLSVLSI 20009:

A centralized buffer management to achieve enhanced
buffer utilization.

Demonstrated a 50% decrease in total buffer
requirement in their router.

Did not provide an active power management strategy.
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Prior Research ...

Wang et al. DATE 2008:

Proposed a zero-efficient design for router buffers that
optimizes the circuit level design of router buffer.

Basis of their research is predominance of zeros in the
NoC traffic.

This is primarily a circuit level work under the
assumption of high zero density and does not
necessarily fare well when there is majority of one.

They do not consider any system-level information or
active power management technique to adapt to the

dynamic nature of the traffic.
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Router Architecture
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Router Architecture: Features

The proposed buffer design is suitable for routers
with centralized buffer management.

To effectively utilize the central buffer design a
concept of virtual buffer is introduced.

Queue management is performed in the physical
buffer.

A concept of set and line is Iintroduced for
allocating buffer.
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Router Architecture: Features ...

The  virtual buffers allow  Iindependent
management of the central buffer structure.

The physical buffer is managed centrally and each
virtual buffer may or may not be mapped to a
physical buffer.

To be able to effectively perform power
management using power gating the buffer is
grouped In blocks.
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Central Buffer Router Architecture
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Dynamic Buffer Management
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Block-Level Power Management

Traffic flow is modeled as a feedback loop.
The buffer size is controlled by a threshold function.

A = Buffer Allocation Rate )\’ = observed traffic
u = Buffer Free Rate f = back pressure

Block-Level Feedback System
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Controller FSM
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How to Resize Buffer
26§

o Organize Buffer in o Central Buffer
blocks Router is needed
7 Turn of un-used
blocks
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Performance Results
I s

Latency Comparison Throughput Comparison
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Energy Savings

S 12

2 10 po e

= 8 ;

w 6 7 //

> 4 - )/

L 0 4 4 T T 1
0 20 40 60 80

Flit Injection Rate (%)

10% Enerayv Savinas Compared to Static Buffer

GLSVLSI 2010 ﬁ ‘ TEXAS A&M UNT 17 May 2010

UNIWVEIRSITY UN[VLFS“YUI NO‘RJ“ ILX!'\."J
t the power rof i




Low Power SRAM Buffer
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/-Transistor Low Leakage SRAM
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SRAM Power Model

Hrn=135.24nW
wif [ = 101.85 nW / .

Frequency

-

Total Power (7T — 45nm)

Total Power

100.5 nW

Static Noise Margin

303.3 mV

 SRAM Average Power (Log scale)

0 and 1 does not reauire

same enerav!
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Write 1
Write 0
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Write 1
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Read 1
Read 0
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Read 0
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21.2nW
21.9nW
12.9nW

7.8nW
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1.0nW
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|deal

Encode flits so that the storage is least
energy consuming

Done by utilizing system level information
about flit content
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Flit-Level Power Management
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Flit-Level Power Management:
Approach

A dynamic encoding technique is applied per
flit to for further energy efficiency.

Invert flits before writing to buffer if resulting
energy consumption is less.

Use an adaptive controller to trigger inversion.
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The Adaptive Controller

= Any flit can be stored in one of the three states: Active 0,
Active 1 or Sleep.

= A linear adaptive control mechanism is designed to
assign the flit storage states dynamically.

Flip? > State :
. The Adaptive Controller
071 T <A70tlve I for State Assionment

Estimator <€«—

Cost <«
Threshold Active (

» A simple estimator is designed for low overhead.
» Flits are marked to be ‘1-dense’ by adding a bit to header.
» A simple estimate is the frequency of this bit being set.
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The Adaptive Controller

GLSVLSI 2010

v

» Update Estimate <€——

No

an 0

Flip =1

CO0 = Cost w/o Inversion

T

Cl = Cost w/ Inversion

Controller FSM
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Energy Savings
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Conclusions
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Conclusions

A novel low power nano-CMOS buffer design was
presented.

Combined block and flit level power management is
performed for throughput and power efficiency.

Proposed technique utilizes system level information for
effective power management of router buffer.

Experimental evaluation have demonstrated the
proposed design to be outperforming static buffer
allocation by 21% in terms of throughput while
consuming up to 20% less power.
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Thank You!
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