A PVT-Aware Accurate Statistical Logic Library for High-к Metal-Gate Nano-CMOS

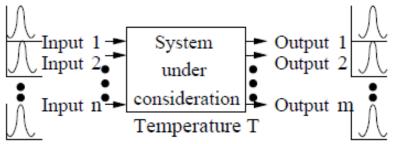
Dhruva Ghai, Saraju P. Mohanty and Elias Kougianos VLSI Design and CAD Laboratory (VDCL) University of North Texas. Priyadarshan Patra Validation Research Lab, Intel Corporation Hillsboro, OR 97124 priyadarshan.patra@intel.com

Acknowledgment: This work is partially supported by NSF award number 0702361.

Outline of Talk

- Introduction and Contributions
- Related Prior Research
- Proposed Methodology for HKMG Logic Library
- Variation-Aware HKMG Device Characterization
- Variation-Aware State Dependent HKMG Logic Level Characterization
- PVT-Aware HKMG Logic Level Characterization
- Conclusions and Future Research

Introduction


- Success of the semiconductor industry relies on the continuous improvement of IC performance by device scaling.
- Scaling of SiO₂ gate-oxide thickness leads to tunneling gate leakage.
- A gate insulator with a higher dielectric constant κ than that of SiO₂ (=3.9) and metal gate (high-κ metalgate (HKMG) nano-CMOS) reduces the gate leakage and improves the reliability of the gate.
- HKMG suffers from I_{sub} : subthreshold leakage and I_{GIDL} : gate-induced drain leakage.

Introduction

- Major sources of variability in nano-CMOS:
 - Process Variation (P)
 - □ Supply Voltage (V), and
 - Operating Temperature (T).
- It is necessary to express the effect of PVT variability on power, leakage and delay: ^Y = f (P, V, T) where ^Y is power, leakage or delay.
- We propose a Monte Carlo based technique to create a PVT aware library. ASystem • Output 1

Contributions

- A methodology for HKMG logic library creation is presented.
- The effect of process variations has been considered during logic library creation.
- Device level characterization of HKMG NMOS and PMOS transistors is presented.
- A HKMG logic library with statistical characterization at room temperature (27 °C) is presented.
- A PVT aware HKMG statistical logic library is presented

Related Prior Research

- Sundareswaran-ISQED2008,Mohanty-VLSID2007: Statistical characterization of logic gates as function of process parameter variations.
- Rastogi-JETTA2008:Rapid Library characterization for specific operating conditions.
- Basu-ISQED2008: Existing standard CMOS Logic Libraries.
- There is a need for characterized standard cells for non-classical CMOS technologies.

Proposed Methodology for HKMG Logic Library

- Variability: The 15 Device Parameters
- (1) V_{dd}: supply voltage.
- (2) V_{Thn} : NMOS threshold voltage.
- (3) V_{Thp} : PMOS threshold voltage.
- (4) t_{gaten} : NMOS gate dielectric thickness.
- (5) t_{gatep} : PMOS gate dielectric thickness.
- (6) L_{effn} : NMOS channel length.
- (7) L_{effp}: PMOS channel length.
- (8) W_{effn} : NMOS channel width.
- (9) W_{effp}: PMOS channel width.
- (10) N_{gaten}: NMOS gate doping concentration.
- (11) N_{gatep}: PMOS gate doping concentration.
- (12) N_{chn} : NMOS channel doping concentration.
- (13) N_{chp} : PMOS channel doping concentration.
- (14) N_{sdn} : NMOS source/ drain doping concentration.
- (15) N_{sdp} : NMOS source/ drain doping concentration.

Proposed Methodology for HKMG Logic Library

- The input to the design flow is a 32 nm HKMG model file.
- First step: statistical characterization at device level i.e. NMOS and PMOS for [^]I_{GIDL}, [^]I_{OFF} and [^]I_{ON}.
- Monte Carlo simulations are run to obtain statistical data (mean (μ), variance (σ)) for each device.
- Second step: PVT aware characterization of logic gates. At a given temperature, the logic gate under consideration is biased for each state and Monte Carlo simulations are performed.
- State dependent data for \hat{I}_{GIDL} and \hat{I}_{sub} is presented. This is followed by measurement of \hat{I}_{dyn} and Propagation Delay.

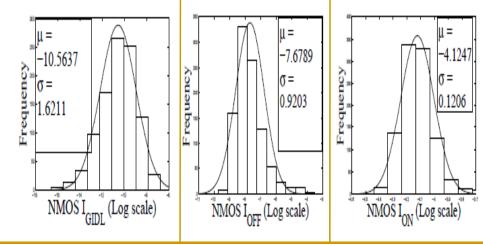
UNIVERSITY OF NORTH TE Discover the power of ideas

High-к Modeling at Device Level

- 32nm Predictive Technology Model (PTM) is used for modeling HKMG transistors (http://www.eas.asu.edu/~ptm/).
- Two methods are used: (1) The model parameter in the model card that denotes relative permittivity (EPSROX) is changed or (2) The equivalent oxide thickness (EOT) for the dielectric under consideration is calculated.
- The EOT is calculated by the formula:

$$EOT = \left(\frac{\kappa_{SiO_2}}{\kappa_{gate}}\right) * t_{gate}$$

- κ_{gate} is the relative permittivity and t_{gate} is the thickness of the gate dielectric material other than SiO₂.
- κ_{SiO2} is the dielectric constant of SiO₂ (= 3.9). We have taken κ_{gate} =21 and t_{gate} =5 nm to emulate a HfO₂ based dielectric. EOT is calculated to be 0.9 nm.

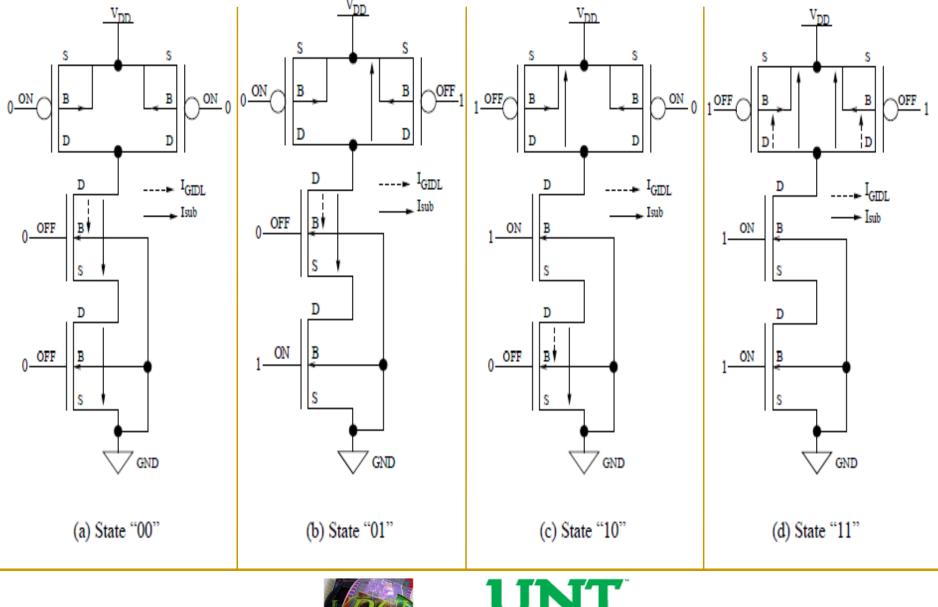


Variation-Aware HKMG Device Level Characterization

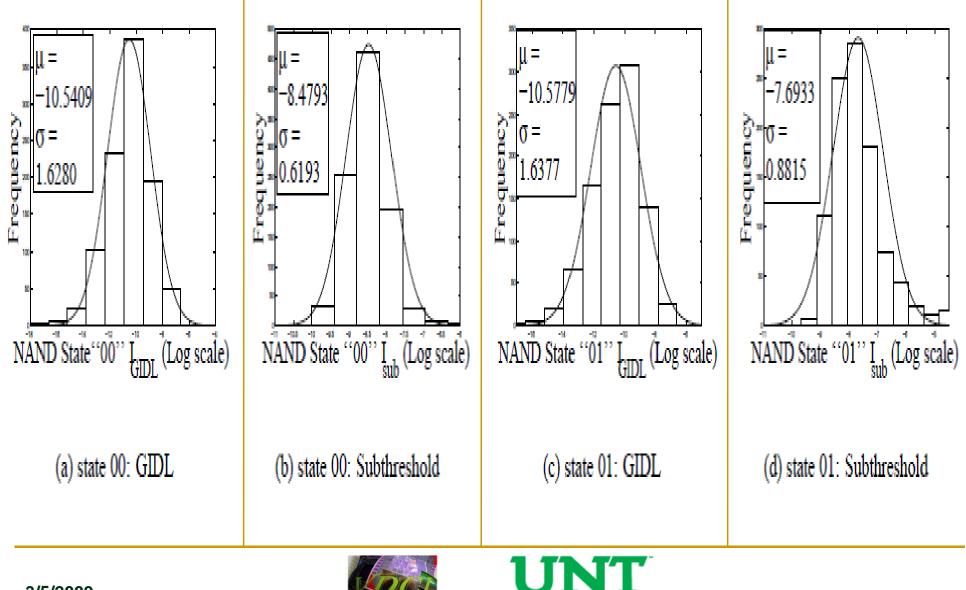
- Different biasing conditions are used for device level characterization of 1 _{GIDL}, 1 _{OFF} and 1 _{ON}.
- A Monte Carlo analysis is done with N=1000 runs, with the 15 process parameters. Each of these process parameters is assumed to have a Gaussian distribution with mean taken as the nominal values specified in the PTM and standard deviation as 10% of the mean.
 - $^{I}_{GIDL}$, $^{I}_{OFF}$ and $^{I}_{ON}$ exhibit Lognormal distribution.

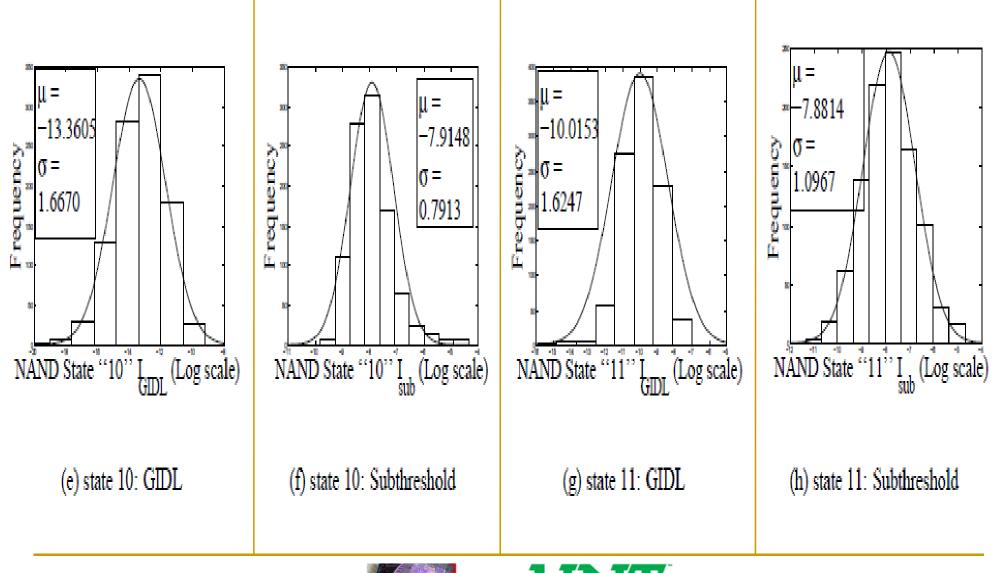
PDF of Cu	rrents	NMOS Device	PMOS Device		
I_{GIDL}	μ	-10.5637	-10.1050		
	σ	1.6211	0.9927		
\hat{I}_{OFF}	μ	-7.6789	-7.4682		
	σ	0.9203	1.1446		
\ddot{I}_{ON}	μ	-4.1247	-4.1694		
	σ	0.1206	0.1632		

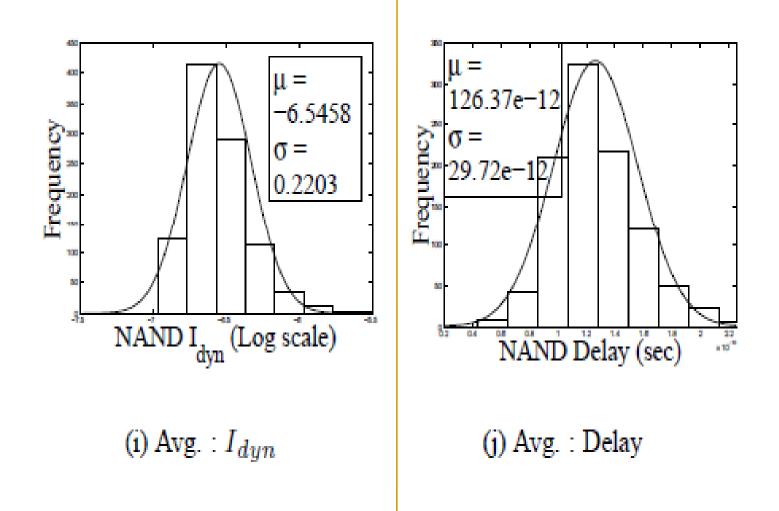
Variation-Aware State Dependent HKMG Logic Level Characterization


- Results for HKMG logic cells are presented at room temperature (27°C).
- State dependent data for 1 _{GIDL} and 1 _{sub} as it leads to accurate leakage estimation.
- As ¹_{dyn} depends primarily on the switching of the logic gates, average data for ¹_{dyn} is presented.
- C_L is taken as 10 times C_{gg} (gate capacitance of PMOS).
- Logic cells characterized: Inverter, NAND, NOR and Buffer.
- Propagation Delay measured using formula:

$$Delay = \left(\frac{\frac{T_{PDLH} + T_{PDHL}}{2}}{2}\right)$$

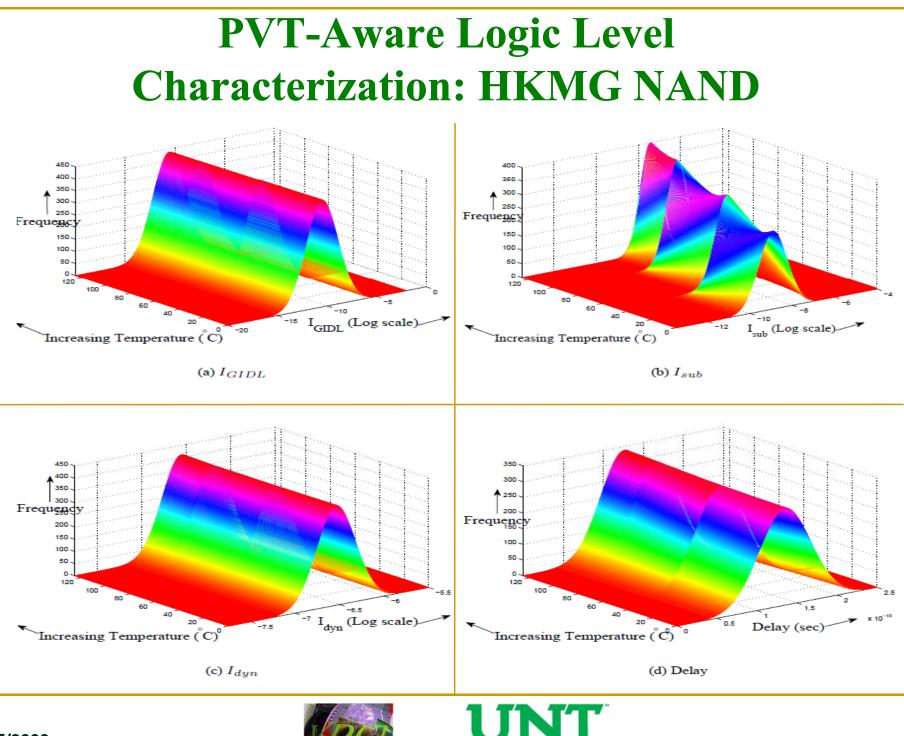

PDF o	PDF of Currents / Delay		"00"	"01"	"10"	"11"			
\hat{I}_{GIL})L	μ	-10.5409	-10.5779	-13.3605	-10.0153			
		σ	1.6280	1.6377	1.6670	1.6247			
\hat{I}_{su}	ub µ		-8.4793	-7.6933	-7.9148	-7.8814			
		σ	0.6193	0.8815	0.7913	1.0967			
\hat{I}_{dy}	n	μ	-6.5458 0.2203						
		σ							
Dela	y	μ	126.37ps						
		σ	29.72ps						





UNIVE

Discover the power of ideas


PVT-Aware HKMG Logic Level Characterization

- Simulations at 0°C, +50°C, +100°C, +125°C are considered.
- It is observed that $\mathbf{\hat{I}}_{GIDL}$ does not show strong dependence on temperature.
- 1 _{sub} shows an increase in the mean (μ) value with increasing temperature. This is due to dependence of 1 _{sub} on V_{Th}, which depends strongly upon temperature.
- Delay also shows an increasing trend with temperature.
- I_{dyn} is measured over one cycle of operation. It remains almost constant with temperature, because for one cycle theoretically, I_{dyn} does not depend on frequency (delay).

Temp	p PDF of I_{GIDL}		PDF of I_{sub}		PDF of \hat{I}_{dyn}			PDF of Delay				
(° C)	μ	σ	$\frac{\sigma}{\mu}$ %	μ	σ	$\frac{\sigma}{\mu}$ %	μ	σ	$\frac{\sigma}{\mu}$ %	μ	σ	$\frac{\sigma}{\mu}$ %
0	-10.5398	1.6230	15.4	-8.9032	0.6763	7.6	-6.5504	0.2184	3.3	126.41 ps	29.61 ps	23.42
50	-10.5418	1.6325	15.5	-8.1738	0.5784	7.1	-6.5442	0.2210	3.4	127.19 ps	30.12 ps	23.68
100	-10.5443	1.6432	15.6	-7.6394	0.5070	6.6	-6.5441	0.2205	3.4	131.55 ps	31.52 ps	23.96
125	-10.5457	1.6490	15.6	-7.4228	0.4781	6.4	-6.5439	0.2197	3.4	134.8 ps	32.32 ps	23.98

Conclusions

- Methodology for a PVT aware HKMG standard cell library creation while considering the effect of process variations is presented.
- Device level characterization for HKMG NMOS and PMOS transistors for drive current (¹_{ON}), off-current (¹_{OFF}) and GIDL current (¹_{GIDL}) has been done, modeled using 32 nm PTM models.
- This is followed by PVT aware statistical characterization of standard cells. The state dependent data for $^{1}_{sub}$, $^{1}_{GIDL}$ and dynamic current ($^{1}_{dyn}$) are presented.

Future Research

- We plan to develop similar logic libraries for other nonclassical CMOS technologies such as Double Gate FET and Carbon Nanotubes and analyze their performance.
- Applications for HKMG Library:
 - The data provided in the paper will be useful at the system level when a probabilistic analysis is carried out.
 - Useful for probabilistic-CMOS, where the analysis is done using probability distribution functions (PDFs), instead of working with actual values.

Thank you