ILP based Gate Leakage Optimization using DKCMOS Library during RTL Synthesis

> Saraju P. Mohanty VLSI Design and CAD Laboratory (VDCL) Dept of Computer Science and Engineering University of North Texas. Email: <u>smohanty@cse.unt.edu</u>

Acknowledgment: This work is partially supported by NSF award number 0702361.

Outline of the Talk

- Introduction and Motivation
- Background Research
- DKCMOS Technology
- Gate Leakage Modeling
- Problem Formulation
- ILP-Based Gate Leakage Optimization
- Datapath Component Library
- Experimental Results
- Conclusions and Future Works

Introduction and Motivation

Why Low Power?

Source: Weste and Harris 2005

Leakages in CMOS

- I₁ : reverse bias pn junction (both ON & OFF) I₂ : subthreshold leakage (OFF) I₃ : Gate Leakage current (both ON & OFF) I₄ : gate current due to hot carrier injection (both ON & OFF) I₅ : gate induced drain leakage (OFF)
- I_6 : channel punch through current (ÓFF)

Power Dissipation Redistribution

Key Contributions of this Paper

- Introduces dual dielectric (DKCMOS) technology for architectural level gate leakage reduction.
- Presents a ILP-based optimization for gate leakage reduction during behavioral synthesis.
- ILP-based optimization uses DKCMOS technology.
- The algorithm minimizes the leakage delay product (LDP) of datapath circuits for given resource constraints.

Background Research

Related Works : Behavioral Level

Subthreshold Leakage:

- Khouri TVLSI 2002 : Algorithms for subthreshold leakage power analysis and reduction using dual-V_{Th} approach.
- Gopalakrishnan ICCD2003: Dual-V_{Th} approach for reduction of subthreshold current through binding.

Gate Leakage:

- Mohanty VLSI Design 2006: Dual-T_{ox} approach for reduction of gate leakage current.
- Mohanty ISQED 2006: Simulated annealing algorithms using dual-K or dual-Tox.

Related Works : Logic / Transistor Level Gate Leakage Reduction

- Lee TVLSI2004 : Pin reordering to minimize gate leakage during standby positions of logic gates.
- Sultania TVLSI Dec 2005 and Sultania DAC2004 : Heuristic for dual-T_{ox} assignment for gate leakage and delay tradeoff.
- Sirisantana IEEE DTC Jan-Feb 2004: Use multiple channel lengths and multiple gate oxide thickness for reduction of leakage.
- Mukherjee ICCD 2005: Introduced dual-K approach for reduction of gate leakage.

DKCMOS Technology

Dielectrics for Replacement of SiO₂

- Silicon Oxynitride (SiO_xN_y) (K=5.7 for SiON)
- Silicon Nitride (Si₃N₄) (K=7)

Oxides of :

 Aluminum (AI), Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Lanthanum (La), Yttrium (Y), Praseodymium (Pr),

• their mixed oxides with SiO_2 and AI_2O_3

The DKCMOS Technology

Gate Leakage Modeling

Gate Leakage Paths in an Inverter

Low Input: Input supply feeds tunneling current.
High Input: Gate supply feeds tunneling current.

NOTE: Gate to body component found to be negligible.

I_{gate} Modeling for a Device

gcs gb **BSIM4** Model

Calculated by evaluating both the source and drain components

For a MOS, $I_{gate} = (|I_{gs} + I_{gd} + I_{gcs} + I_{gcd} + I_{gb}|)$

Values of individual components depends on states, ON or OFF

K_{gate} **Modeling**

The effect of varying dielectric material was modeled by calculating an equivalent oxide thickness (T*_{ox}) according to the formula:

$$T_{ox}^{*} = (K_{gate} / K_{ox}) T_{gate}$$

- Here, K_{gate} is the dielectric constant of the gate dielectric material other than SiO₂, (of thickness T_{gate}), while K_{ox} is the dielectric constant of SiO₂.

Problem Formulation

Target Architecture

High-K and Low-K Islands

Problem Formulation

Given an unscheduled data flow graph (UDFG) G_U(V,E), it is required to find the scheduled data flow graph (SDFG) G_S(V,E) with appropriate resource binding such that the total gate leakage and delay product (LDP) is minimized under given resource.

Minimize:
$$LDP(DFG)$$

Allocated $(R_{t,K}) \leq \text{Available}(R_{t,K}), \forall c \in N$
 $LDP(DFG) = \sum_{c=1}^{N} \sum_{\forall v_{i,c}} P_{gate}(v_{i,c}) \times d_{c}$

ILP based Gate Leakage Optimization

ILP Based LDP Optimization ...

- 1. Preprocess given behavioral description to construct a sequencing DFG.
- 2. Perform simulations to estimate gate leakage and delay of RTL units.
- 3. Construct resource allocation table and available resource table based on input resource constraints.
- 4. Obtain ASAP and ALAP schedules of the input DFG.
- 5. Determine the number of different resources for each K using the resource allocation table.

ILP Based LDP Optimization

- 6. Modify both ASAP and ALAP schedules obtained above using the number of resources found in previous step.
- 7. Construct the mobility graph based on above schedules.
- 8. Fix the total number of clock cycles as the maximum of modified ASAP and ALAP schedules' control step.
- 9. Model the ILP formulations of the DFG using AMPL.
- 10. Obtain the final solution by solving the ILP formulations.

ILP Formulations ...

 Objective Function: The objective is to minimize the LDP of the whole DFG over all control steps. This can be expressed using decision variable as:

> Minimize : LDP(DFG)Minimize : $\sum_{l} \sum_{i} \sum_{k} X_{i,K,l,(l+L_{i,K}-1)} \times LDP(i,K)$

ILP Formulations

Uniqueness Constraints: These constraints are represented as,

$$\sum_{K} \sum_{K} \sum_{l=S_{i}}^{S_{i}+E_{i}+1-L_{i,K}} X_{i,K,l,(l+L_{i,K}-1)} = 1$$

Precedence Constraints: These constraints should also ensure the multicycling and are modeled as, $\forall i, j, v_i \in Pred_{viv}$

$$\sum_{K} \sum_{l=S_{i}}^{E_{i}} (l + L_{i,K} - 1) \times X_{i,K,l,(l+L_{i,K}-1)} - \sum_{K} \sum_{l=S_{j}}^{E_{j}} l \times X_{j,K,l,(l+L_{j,K}-1)} \le -1$$

Resource Constraints: These constraints ensure that each cycle uses resources not exceeding available number of resources and are enforced as, $\forall K \text{ and } \forall I, 1 \leq I \leq N$,

$$\sum_{i \in R_{t,K}} X_{i,K,l,(l+L_{i,K}-1)} \le M_{t,K}$$

Datapath Components Library

Datapath Component Library : 3 Level Bottom-up Hierarchical Approach

We observed that a NAND gate has least gate leakage compared to all other basic logic gates. Therefore we constructed datapath components using NAND gates.

UNIVERSITY OF

XAS

Datapath Component Library ...

- First we characterize the NAND gate using analog simulations and then characterize functional units.
- We assume that there are total n_{total} NAND gates in the network of NAND gates constituting an n-bit functional unit out of which n_{cp} are in the critical path.
- We do not consider the effect of interconnect wires and focus on the gate leakage current dissipation and propagation delay of the active units only.

Datapath Component Library ...

Datapath Component Library

The gate leakage current for a specific state of a logic gate is then calculated by:

$$I_{gate \operatorname{Logic}_{state}} = \sum_{\forall MOS_{i}} \left| I_{gate \operatorname{MOS}} \left[i \right] \right|$$

The gate leakage of a n-bit RTL unit is calculated as:

$$I_{gateR} = \sum_{j=1}^{n_{total}} \Pr{ob(state)} I_{gateNAND_{j}_{state}}$$

The propagation delay of an *n*-bit functional unit is:

$$T_{pdR} = \sum_{i=1}^{n cp} T_{pdNANDi}$$

Experimental Results

Experimental Results ...

While calculating the gate leakage current for single thickness, we used a nominal 1.4nm thickness and SiO₂(K=3.9) is used as a nominal dielectric value from BSIM4.4.0 model.

Two pairs of dual dielectric are considered:
(i) SiO₂(K=3.9) – SiON (K=5.7)
(ii) SiO₂(K=3.9) – Si₃N₄(K=7)

The results take into account the gate leakage current, area and propagation delay of functional units, interconnect units, and storage units present in the datapath circuit.

Experimental Results ...

Experimental Results

Conclusions and Future Works

Conclusions

- This paper presents a new process driven technique called DKCMOS for reduction of gate leakage during RTL synthesis.
- The ILP based algorithm does scheduling and assignment for gate leakage reduction for different resource constraints.
- Experimental results reveal significant reductions in gate leakage with the use of this technology, thus proving its effectiveness.

Future Works

- Further exploration of this technique is the incorporation of process variation.
- The effectiveness of DKCMOS for subthreshold leakage needs investigation.
- The ultimate objective is to extend the work on gate leakage current to provide a broader solution to the problem of power dissipation in all its forms at the behavioral level.
- The area overhead due to the use two separate islands (high-K and low-K) will also investigated.

