A Process and Supply Variation Tolerant Nano-CMOS Low Voltage, High Speed, A/D Converter for System-on-Chip

Dhruva Ghai, Saraju P. Mohanty, and Elias Kougianos VLSI Design and CAD Laboratory (VDCL) Dept of Computer Science and Engineering University of North Texas. Email: <u>smohanty@cse.unt.edu</u>

 Acknowledgment: This work is partially supported by NSF award number 0702361.

Outline of the Talk

- Introduction and Motivation
- Contributions, Design issues and Solutions
- Related Prior Research Works
- Transistor level design of the proposed ADC
- Physical design and Characterization of ADC
- Process and Supply variation Characterization
- Conclusion and Future Works

Introduction: Why Nano-CMOS ADC

- A large number of SoCs manufactured at the 90nm process, 65nm, 45nm closely following.
- Challenge is to meet performance of analog circuit with that of digital portion.
- Systems that once worked at 3.3/2.5V need to work at 1.8V without performance degradation.
- New circuit design techniques required to accommodate lower supply voltages.
- Analog/Mixed signal circuits should be designed using standard CMOS digital process.

Introduction: Nano-CMOS ADC

- ADC is a true mixed signal circuit used to bridge the gap between analog circuits and digital logic world.
- ADC circuit designs often contain matched transistors. In analog circuits, threshold voltage mismatch needs to be considered.
- For SoC capability, supply voltage variation should also be accounted.
- The demand for emerging application-specific, nanoscale mixed-signal SoCs which need process (threshold voltage mismatch) and power supply voltage variation tolerant ADC interfacing has motivated this research.

Design Issues and Solutions

- Logical and physical design of a process and supply variation tolerant ADC using 90nm technology, suitable for SoC integration.
- Post-layout simulation results presented.
- Low supply voltage ($V_{dd} = 1.2V$), low power (Power αV_{dd}^2). Low V_{dd} puts constraint on the choice of 63 quantization levels (for 6-bit ADC in this paper). *LSB* = 1mV chosen for this design.
- INL degradation (INL > 1LSB) observed in the initial physical design, due to IR drop in the supply lines. INL =0.344LSB, by using large number of contacts and widening the supply lines.
- Power analysis with 100fF reveals ADC consumes minimal power.

Related Prior Research Works

Works	Tech. (nm)	DNL (LSB)	INL (LSB)	V _{dd} (V)	Power (<i>mW</i>)	Rate (GS/s)
Geelen[9]	350	< 0.7	< 0.7	3.3	300	1.1
Uytttenhove [19]	350			3.3		1
Donovan [6]	250			2.2	150	0.4
Tseng [8]	250	< 0.1	< 0.4	2.5	35	0.3
Yoo [11]	250			2.5	66.87	1
Scholtens [16]	180		0.42	1.95	328	1.6
Sandner [7]	130	< 0.4	< 0.6	1.5	160	0.6
This Work	90	0.459	0.344	1.2	3.875	1

Low Technology, low voltage, low power, high speed design with satisfactory *DNL*, *INL* performance.

Transistor Level Design of the Proposed ADC

Output of Comparator Bank is thermometer code.
Converted to 1-of n code using 1-of n code generators.
NOR ROM converts the 1-of n code to binary code.

ADC : Circuit Diagram

Comparator Design : Technique

- Comparator designed using Threshold Inverting (TI) technique.
- Advantages of TI technique:
 - 1. High speed.
 - 2. Simplicity.
 - 3. Eliminates the need for inherently complex highgain differential input voltage comparators and additional resistor ladder circuit.

Comparator Design : Circuit

*V*_{switching} set internally based on transistor sizes.
Inverter 1 and 2 form the baseline comparator, while Inverter 3 and 4 provide increased gain and sharper switching.

Comparator Design : Equations

For short channel transistors:

/

$$V_{switching} = V_{dd} \left(\frac{R_n}{R_n + R_p} \right), R_n = \text{NMOS effective switching resistance.}$$

InputVolta geRange =
$$V_{dd} - (V_{tn} + |V_{tp}|),$$

 V_{dd} = supply voltage. V_{tn} = NMOS threshold voltage. V_{tp} = PMOS threshold voltage. Values chosen 493mV to 557mV.

$$V_{LSB} = \left(\frac{InputVoltageRange}{2^n}\right),$$

For our design, $V_{LSB} = 1mV$.

1

1 of n code generator Design

- Converts thermometer code into 1 of n code.
- Consists of AND gates as combination of an inverter followed by a NAND gate.
- Output from each of the AND gates is fed to the input of the NOR ROM.
- One of the two inputs to the AND gate is fed from the TI comparator output.
- The other input to the AND gate is the inverted output from the next level comparator.

NOR ROM Design

- Converts 1-of-n code to binary code.
- Consists of PMOS (135nm/180nm) pull-up and NMOS (180nm/180nm) pull-down devices.
- 63 word lines, 6 bit lines, 63 x 6 NOR ROM designed.
- Wp < Wn, to ensure PMOS is narrow enough for NMOS to pull down output safely.
- Buffers, consisting of two cascaded inverters (PMOS: 480nm/120nm, NMOS: 240nm/120nm) are applied at the outputs to obtain symmetrical waveforms, with equalized rise and fall times.

Physical Design and Characterization of ADC

ADC: Physical Design

- Physical design of the ADC carried out using 90nm Salicide "1.2V/2.5V 1 Poly 9 Metal" digital CMOS pdk, demonstrating SoC readiness.
- To ensure minimal IR drop, power and ground routing comprises of wide vertical bars and generous use of contacts has been made.

Post Layout Functional Simulation

- Transient analysis is carried out, where a linearly varying ramp covering full scale range of ADC, is given as input.
- Output digital codes from 0 to 63 obtained correctly, with no missing codes. Maximum sampling speed 1GS/s.

Characterization: Equations

- ADC characterized for static performance.
- Nominal characterization: Histogram test used to determine *INL* (Integral Non-Linearity), *DNL* (Differential Non-Linearity).
- Equations for *INL*, *DNL*:

$$INL[i] = width[i] + INL[i-1] - 1$$

$$DNL[i] = width[i] - 1$$

width
$$[i] = \frac{1 * bucket [i]}{hits * (NUM_{CODES} - 2)}$$

- where *bucket* holds the number of code hits for each code.
- *width* holds the code width calculations.
- •Total hits between codes 1 and 62 is denoted as *hits*.
- *NUM_{CODES}* is the number of codes, 64 for a 6-bit ADC.

Characterization: INL and DNL Plots

Maximum *INL=0.344LSB.*Maximum *DNL=0.459LSB.*

Power Analysis

Instantaneous Power Plot.

Power analysis of the ADC performed with a capacitive load of 100fF.

• Peak Power = 5.794mW.

Average Power = 3.875mW.

ADC Components	Average Power (mW)
Comparator Bank	3.68125 (95%)
1 of n code Generators	0.03875 (1%)
NOR ROM	0.155 (4%)
Total	3.875

ADC Performance

Parameter	Value	
Technology	<i>90nm</i> CMOS 1P 9M	
Resolution	6 bit	
Supply voltage (V _{dd})	1.2V	
Sampling Rate	1GS/s	
INL	0.344LSB	
DNL	0.459LSB	
Peak Power	5.794mW@1.2V	
Average Power	3.875mW@1.2V	
Input Voltage Range	493mV to 557mV	
V _{LSB}	1mV	

Process and Supply variation Characterization

Process Variation

- Corner-based methodology is used.
- NMOS threshold voltage (V_{tn}) and PMOS threshold voltage (V_{tp}) varied by ±5% from nominal value in the pdk.
- Shift in *INL, DNL,* input voltage range recorded.
- INL shows maximum variation of 10.5%.
- **DNL** shows maximum variation of 5.7%.

Process Variation: Corner Method

Process Variation: *INL* and *DNL*

Vtp, Vtn	Input Range (mV)	V _{LSB} (mV)	INL <i>(LSB)</i>	DNL (LSB)
nominal	493-557	1	0.344	0.459
+5%, +5%	495-557	0.96875	0.333	0.46
-5%, -5%	491-556	1.015625	0.345	0.477
-5%, +5%	500-564	1	0.36	0.485
+5%, -5%	501-566	1.015625	0.38	0.479

Supply Variation : INL and DNL

- Nominal supply voltage (1.2V) varied by ±10%.
- INL, DNL, and input voltage range values are recorded.
- INL shows maximum variation of 4%.
- DNL shows maximum variation of 4.8%.

Vdd(V)	Input Range (mV)	V _{LSB} (mV)	INL <i>(LSB)</i>	DNL (LSB)
1.08V (-10%)	448-500	0.8125	0.359	0.467
1.2V (nominal)	493-557	1	0.344	0.459
1.32V (+10%)	537-614	1.203	0.339	0.481

Conclusion and Future Works

- Design of a process and supply variation aware low voltage, high speed flash ADC presented.
- Comparators designed using threshold inverting (TI) technique.
- ADC subjected to ±10% supply variation, ±5% threshold voltage mismatch.
- Nominal *INL=0.344LSB*, maximum variation of *10.5%*.
- Nominal *DNL=0.459LSB*, maximum variation of *5.7%*.
- It is demonstrated that the design of low voltage, high speed and SoC ready ADCs is possible at 90nm technology and below.
- We plan to carry out the complete design cycle for this ADC at 45nm.
- Alternative encoder architectures will be explored to achieve higher sampling speeds.

Thank You

