Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis

Saraju P. Mohanty and Elias Kougianos VLSI Design and CAD Laboratory (VDCL) University of North Texas, Denton, TX, USA. Email: smohanty@cse.unt.edu

Outline of the Talk

CMOS scaling Trends Our Contributions and Related Research Statistical Power Modelling Optimization Approach Datapath Component Library Experimental Results Conclusions

CMOS Scaling Trends

Nano-CMOS Based Systems

H*IFXAS

12/3/2006 VLSI Design 2007

Scaling Trend – Transistor Count

Operating frequency and throughput have increased.

12/3/2006 VLSI Design 2007 UNIVERSITY OF NORTH*TEXAS

What are Scaled ?

Currents in Nanoscale CMOS

- I₀: active drain-to-source current (ON)
- I_1 : reverse bias pn junction (both ON & OFF)
- l₂: subthreshold leakage (OFF)
- I_3^2 : oxide tunneling current (both ON & OFF)
- I_4 : gate current due to hot carrier injection (both ON & OFF)
- I₅: gate induced drain leakage (OFF)
- I₆: channel punch through current (ÓFF)

Power Dissipation in Nano-CMOS: 3 Major Components

Total Power Dissipation

Capacitive Switching Current

→ Gate Oxide Leakage

→ Sub-threshold Leakage

The research in this paper intends to simultaneously optimize the three components.

12/3/2006 VLSI Design 2007

Power Dissipation Trend

VLSI Design 2007

Our Contributions and Related Research

Proposed Process Variation Aware High-Level Synthesis

Contributions of Our Paper

- Introduction of an statistical process variation aware datapath component library.
- Introduction of a process variation aware power and fluctuation minimization method.
- Exploration of all design corners of a dual-T_{ox}, dual-V_{th} and dual-V_{DD} technology through Simulated Annealing based optimization algorithm.

Related Research: Dynamic Power

- Martin, et al. [8]: Peak dynamic power reduction through scheduling and binding.
- Mohanty, et al. [11]: Heuristic method for peak and average dynamic power.
- Mohanty, et al. [12]: ILP based method for fluctuation in dynamic power.
- Raghunathan, et al. [13]: Simultaneous minimization of peak and peak differential in dynamic power.
- □ Shiue [15]: ILP formulation to reduce peak dynamic power under latency constraints.

Related Research: Leakage Power

- Gopalakrishnan, et al. [5]: MTCMOS approach for reduction of subthreshold leakage current.
- Khouri, et al. [7]: Algorithms for subthreshold leakage power analysis and reduction using dual threshold voltage.

Related Research: Summary

- Most of the low power high-level synthesis works address average dynamic power reduction.
- Some of them address subthreshold leakage.
- A few address gate oxide leakage.
- Few of them of them address fluctuation in power consumption.
- None of them address the components (dynamic, subthreshold and gate leakage) together.
- □ None of them account process variation.

Statistical Power Modeling

Overall Objective Function for a Datapath Circuit

Objective function has two parts:

- Average power
- Power fluctuation

$$\chi_{P\cup F}^{Datapath} = \chi_P^{DFG} + \chi_F^{DFG}$$

Average Power of a Datapath Circuit

Average of power account all forms:

- Switching power
- Gate oxide leakage
- Subthreshold leakage

$$\chi_P^{DFG} = \alpha I_{gate}^{DFG}(\mu, \sigma) + \beta I_{sub}^{DFG}(\mu, \sigma) + \gamma I_{dyn}^{DFG}(\mu, \sigma)$$

Total Fluctuation in Power Consumption of a Datapath Circuit

Total cycle-to-cycle power fluctuation if number of clock cycles (c) is N_{cc} :

$$\chi_F^{DFG} = \sum_{c=1}^{N_{cc}-1} \left| I_{total}^c(\mu,\sigma) - I_{total}^{c+1}(\mu,\sigma) \right|$$

Total current in cycles c is:

$$I_{total}^{c}(\mu,\sigma) = I_{gate}^{c}(\mu,\sigma) + I_{sub}^{c}(\mu,\sigma) + I_{dyn}^{c}(\mu,\sigma)$$

12/3/2006 VLSI Design 2007

Our Optimization Approach During Behavioral Synthesis

Simulated Annealing for Optimization

- Analogous to the annealing process, the mobility of nodes in a DFG is dependent on the total available resources.
- Nodes of a DFG are analogous to the atoms and temperature is analogous to the total number of available resources.
- To minimize the objective function the scheduling and binding need to done using resources from different design corners.

Simulated Annealing Based Optimization

Simulated Annealing Algorithm (UDFG, Constraints, Library) (01) Perform ASAP and ALAP scheduling. (02) While there exists a schedule with available resources. (03)i = Number of iterations Perform resource constrained ASAP and ALAP (04)(05)Initial Solution

ASAP Schedule (06) $S \leftarrow Allocate-Bind()$ (07)Initial Cost \leftarrow Power-Cost(S) (08)While (i > 0)(09)Generate random transition from S to S^{*}. (11) Δ -Cost \leftarrow Power-Cost(S) – Power-Cost(S*) (12)if (Δ -Cost > 0) then S \leftarrow S*. (13)i ← i – 1 (14)end While (15)Decrement available resources (16) end While (17) return S.

Simulated Annealing Based Optimization

Power-Cost (S, Library) (01) $I_{Totalc} = Current(FU_i(V_{DD}, V_{th}, T_{ox}))$ (02) $PF_c = |I_{Totalc} - I_{Totalc-1}|$ (03) $I_{\text{Total}} = \Sigma_c I_{\text{Totalc}}$ (04) $PF_{Total} = \Sigma_{c} PF_{c}$ (05) Cost-PDF = $\theta * I_{Total} + \delta * PF_{Total}$ (06) Cost = a * μ (Cost-PDF) + b * σ (Cost-PDF) (07) return Cost.

Process Variation Aware Datapath Component Library

- The BSIM4 deck generated through BPTM represent a hypothetical 45nm CMOS process.
- The nominal values for design corner (1) are: $T_{ox} = 1.4$ nm, $V_{th} = 0.22V$ for NMOS, $V_{th} = -0.22V$ for PMOS, W/L = 4/1 for NMOS, W/L = 8/1 for PMOS, and $V_{DD} = 0.7V$.

UNIVERSITY OF NORTH*TEXAS

Datapath Component Library

- We assumed that resources such as adders, subtractors, multipliers, dividers, are constructed using 2-input NAND.
- □ There are total *n*_{total} NAND gates in the network of NAND gates constituting a *n*-bit functional unit.
- number of NAND gates are in the critical path.
- Through Monte Carlo simulations the input process and design variations are modeled.

Datapath Component Library: Baseline Data

15 –

14 -

13 =

12 -

11.

10 -

Current (in micro Amps) 83.0ns $9 \cdot$ 8 $T_{\rm eff}$ 6. 5 -4-3. 66.9ns 60.9ms -2.9 ns 52.1ns 52.1ns $\mathbf{2}$ AD DOD NUMBER OF STREET, STRE 007/02/02 COMPARATOR RECEIPTER MELTIREXXE Functional Units

2.82.1ns

(Corner - 2)

(Corner - 1)

Mohanty & Kougianos 27

is ub-base

Id yn-base

kaa te-bas e

Corner-2

Datapath Component Library: Statistical Data

NOTE: Similar results are obtained for gate oxide leakage and subthreshold current.

12/3/2006 VLSI Design 2007

Experimental Results and Conclusions

Experimental Results : Setup

- Algorithm implemented in C an integrated in our in-house tool.
- Various different resource constraints are used.
- □ Time constraints were selected from 1.0 to 1.4 times of the critical path delay.
- Typical simulation time was in the range 20mins to 30 mins.

Experimental Results : % Average for DCT

UNIVERSITY OF

 \star

Δ

Experimental Results : % Average for FIR

UNIVERSITY OF

 \star

Δ

Experimental Results : % Average for HAL

UNIVERSITY OF

 \star

Δ

Summary and Conclusions

- Process variation aware power and fluctuation minimization methodology is presented.
- Dual oxide thickness, threshold voltage, and supply voltage technique are used for power reduction.
- Simulated annealing based optimization is used.
- Experimental results showed significant reduction is all forms of power dissipation for all benchmark circuits.

Thank You!

