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CMOS Scaling TrendsCMOS Scaling Trends
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NanoNano--CMOS Based SystemsCMOS Based Systems

Almost the entire industry today is driven by CMOS.

Energy costs, 
Battery life, 

Cooling costs

?

Low Power 
Synthesis
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Scaling Trend Scaling Trend –– Transistor CountTransistor Count

1967 2007

Increase in Transistor Count per chip

VLSI technology is the fastest growing 
technology in human history.

Operating 
frequency and 
throughput  
have 
increased.
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What are Scaled ?What are Scaled ?

Source: Taur IBM JRD MAR 2002
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Currents in Nanoscale CMOSCurrents in Nanoscale CMOS
I0: active drain-to-source current (ON)
I1: reverse bias pn junction (both ON & OFF)
I2: subthreshold leakage (OFF )
I3: oxide tunneling current (both ON & OFF)
I4: gate current due to hot carrier injection (both ON & OFF)
I5: gate induced drain leakage (OFF)
I6: channel punch through current (OFF)

Adopted from: Roy Proceedings of IEEE Feb2003
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Power Dissipation in Power Dissipation in NanoNano--CMOS:CMOS:
3 Major Components 3 Major Components 

Total Power DissipationTotal Power Dissipation

Sub-threshold Leakage

Gate Oxide Leakage

Capacitive Switching Current

The research in this paper intends to 
simultaneously optimize the three components.
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Power Dissipation TrendPower Dissipation Trend

Source: Hansen Thesis 2004
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Our Contributions Our Contributions 
and and 

Related ResearchRelated Research
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Proposed Process Variation Aware Proposed Process Variation Aware 
HighHigh--Level SynthesisLevel Synthesis
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Contributions of Our PaperContributions of Our Paper

Introduction of an statistical process variation 
aware datapath component library.
Introduction of a process variation aware 
power and fluctuation minimization method.
Exploration of all design corners of a dual-
Tox, dual-Vth and dual-VDD technology through 
Simulated Annealing based optimization 
algorithm.
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Related Research: Dynamic PowerRelated Research: Dynamic Power
Martin, et al. [8]: Peak dynamic power reduction 
through scheduling and binding.
Mohanty, et al. [11]: Heuristic method for peak 
and average dynamic power.
Mohanty, et al. [12]: ILP based method for 
fluctuation in dynamic power. 
Raghunathan, et al. [13]: Simultaneous 
minimization of peak and peak differential in 
dynamic power.
Shiue [15]: ILP formulation to reduce peak 
dynamic power under latency constraints.
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Related Research: Leakage PowerRelated Research: Leakage Power

Gopalakrishnan, et al. [5]: MTCMOS approach 
for reduction of subthreshold leakage current.
Khouri, et al. [7]: Algorithms for subthreshold
leakage power analysis and reduction using dual 
threshold voltage.
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Related Research: SummaryRelated Research: Summary

Most of the low power high-level synthesis works 
address average dynamic power reduction.
Some of them address subthreshold leakage. 
A few address gate oxide leakage.
Few of them of them address fluctuation in power 
consumption. 
None of them address the components (dynamic, 
subthreshold and gate leakage) together. 
None of them account process variation.
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Statistical Power ModelingStatistical Power Modeling
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Overall Objective Function for a Overall Objective Function for a 
DatapathDatapath CircuitCircuit

DFG
F

DFG
P

Datapath
FP χχχ +=∪

Objective function has two parts:

• Average power

• Power fluctuation
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Average Power of a Average Power of a DatapathDatapath CircuitCircuit
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DFG
P III ++=

Average of power account all forms:

• Switching power

• Gate oxide leakage

• Subthreshold leakage



12/3/2006
VLSI Design 2007 Mohanty & Kougianos 19

Total Fluctuation in Power Consumption Total Fluctuation in Power Consumption 
of a of a DatapathDatapath CircuitCircuit

∑
−

=

+−=
1

1

1 ),(),(
ccN

c

c
total

c
total

DFG
F II σμσμχ

),(),(),(),( σμσμσμσμ c
dyn

c
sub

c
gate

c
total IIII ++=

Total cycle-to-cycle power fluctuation if number of 
clock cycles (c) is Ncc:

Total current in cycles c is:
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Our Optimization Approach Our Optimization Approach 
During Behavioral SynthesisDuring Behavioral Synthesis
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Simulated Annealing for OptimizationSimulated Annealing for Optimization

Analogous to the annealing process, the mobility 
of nodes in a DFG is dependent on the total 
available resources. 
Nodes of a DFG are analogous to the atoms and 
temperature is analogous to the total number of 
available resources.
To minimize the objective function the scheduling 
and binding need to done using resources from 
different design corners. 
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Simulated Annealing Based OptimizationSimulated Annealing Based Optimization
Simulated Annealing Algorithm (UDFG, Constraints, Library)
(01) Perform ASAP and ALAP scheduling.
(02) While there exists a schedule with available resources.
(03)       i = Number of iterations
(04)       Perform resource constrained ASAP and  ALAP
(05)       Initial Solution ASAP Schedule
(06)       S Allocate-Bind()
(07)       Initial Cost Power-Cost(S)
(08)       While (i > 0)
(09)            Generate random transition from S to S*.
(11)            Δ-Cost Power-Cost(S) − Power-Cost(S*)
(12)            if( Δ-Cost > 0 ) then S S*.
(13)            i i − 1
(14)       end While
(15)       Decrement available resources
(16) end While
(17) return S.
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Simulated Annealing Based OptimizationSimulated Annealing Based Optimization

Power-Cost (S, Library)
(01)   ITotalc = Current(FUi(VDD, Vth, Tox))
(02)   PFc = | ITotalc – ITotalc-1|
(03)   ITotal =  Σc ITotalc

(04)   PFTotal =  Σc PFc

(05)   Cost-PDF = θ ∗ ITotal + δ ∗ PFTotal

(06)   Cost = a * μ(Cost-PDF) + b * σ (Cost-PDF)
(07) return Cost.
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Process Variation Aware Process Variation Aware 
DatapathDatapath Component LibraryComponent Library
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DatapathDatapath Component Library: Component Library: 
33--Level Hierarchical ApproachLevel Hierarchical Approach

• The BSIM4 deck generated through BPTM represent a 
hypothetical 45nm CMOS process. 

• The nominal values for design corner (1) are: Tox = 1.4nm, 
Vth = 0.22V for NMOS, Vth = −0.22V for PMOS, W/L = 4/1 
for NMOS, W/L = 8/1 for PMOS, and VDD = 0.7V.
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DatapathDatapath Component LibraryComponent Library

We assumed that resources such as adders, 
subtractors, multipliers, dividers, are constructed 
using 2-input NAND.
There are total ntotal NAND gates in the network 
of NAND gates constituting a n-bit functional unit.
ncp number of NAND gates are in the critical 
path. 
Through Monte Carlo simulations the input 
process and design variations are modeled.
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DatapathDatapath Component Library:Component Library:
Baseline DataBaseline Data

(Corner – 1) (Corner – 2)
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DatapathDatapath Component Library:Component Library:
Statistical DataStatistical Data

Dynamic Current Propagation Delay

NOTE: Similar results are obtained for gate oxide leakage 
and subthreshold current.
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Experimental Results Experimental Results 
and and 

ConclusionsConclusions
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Experimental Results : SetupExperimental Results : Setup

Algorithm implemented in C an integrated in our 
in-house tool. 
Various different resource constraints are used.
Time constraints were selected from 1.0 to 1.4 
times of the critical path delay.
Typical simulation time was in the range 20mins 
to 30 mins.
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Experimental Results : Experimental Results : 
% Average for DCT% Average for DCT
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Experimental Results : Experimental Results : 
% Average for FIR% Average for FIR
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Experimental Results : Experimental Results : 
% Average for HAL% Average for HAL
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Summary and ConclusionsSummary and Conclusions

Process variation aware power and fluctuation 
minimization methodology is presented.
Dual oxide thickness, threshold voltage, and 
supply voltage technique are used for power 
reduction.
Simulated annealing based optimization is used.
Experimental results showed significant reduction 
is all forms of power dissipation for all benchmark 
circuits.
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Thank You!


