A 45*nm* Flash Analog to Digital Converter for Low Voltage High Speed System-on-Chips

Dhruva Ghai, Saraju P. Mohanty and Elias Kougianos VLSI Design and CAD Laboratory (<u>www.vdcl.cse.unt.edu</u>) Dept. of Computer Science and Engineering University of North Texas <u>dvg0010@unt.edu</u>, <u>smohanty@cse.unt.edu</u>, <u>eliask@unt.edu</u>

> Presented by Dhruva Ghai University of North Texas dhruva@unt.edu

Ghai, Mohanty & Kougianos 1

Outline

- □ Introduction and Motivation
- Specifications
- Related Research Works
- Design of flash ADC
- □ The TIQ principle
- □ TIQ Comparator
- □ Sizing of transistors
- **G** Functional Simulation
- □ Ideal vs Actual Characteristics
- DNL
- □ INL
- □ SNDR
- Instantaneous Power Plot
- Conclusion and Future Works

Ghai, Mohanty &

Kougianos 2

Introduction and Motivation

- ADCs are interfaced with digital circuits in mixed signal chips, where digital signal processing is performed.
- Supply voltage decreasing rapidly for digital circuits as technology scales.
- Analog to digital converters required to be operating with these devices at the same voltages.
- □ The proposed design meets both criteria: Low supply voltage (0.7V) and technology (45nm).

NASA VLSI 2007

Specifications

□ Resolution	•	6 bits.
□ Technology	•	45 <i>nm</i> .
□ Speed	•	1Gs/sec.
\Box V _{LSB}	•	$500\mu V.$
\Box V _{DD}	•	0.7 <i>V</i> .
□ INL	•	0.46 <i>LSB</i> .
DNL	•	0.70 <i>LSB</i> .
□ SNDR	•	31.9 <i>dB</i> .

Related Research Works

Reference	Resolution (bits)	Technology (nm)	DNL (LSB)	INL (LSB)	SNDR (dB)	VDD (V)	Power (mW)	Samples/s ec.
Choi 2001	6	350	<±0.3	<±0.3	32	3.3	545	1.3G
Donovan 2002	6	250			33	2.2	150	400M
Geelen 2001	6	350	<0.7	<0.7	5.6 (ENOB)	3.3	300	1.1G
Lee 2002	6	250	1.04	0.81		2.5	59.91	1.11G
Mehr 1999	6	350	< 0.32	<0.2	>5(ENOB)	3.3	225	500M
Sandner 2005	6	130	<0.4	<0.6	32.5	1.5	160	600M
Scholtens 2002	6	180		0.42	5.7(ENOB)	1.95	328	1.6G

NASA VLSI 2007

UNIVERSITY OF NORTH*TEXAS

Related Research Works....

Reference	Resolution (bits)	Technology (nm)	DNL (LSB)	INL (LSB)	SNDR (dB)	VDD (V)	Power (mW)	Samples/s ec.
Song 2000	6	350	-0.6	0.7	33.5	1	10	50M
Srinivas 2006	6	350	0.3	0.3	33.6	3.3	50	160M
Tseng 2004	6	250	<±0.1	<±0.4	32.7	2.5	35	300M
Uyttenhov e 2000	6	350			32	3.3		1G
Uyttenhov e 2002	6	250	0.42	0.8	32	1.8	600	1.3G
Yoo 2001	6	250				2.5	66.87	1G
This Work	6	45	0.7	0.46	31.9	0.7	45.42µW	1G

NASA VLSI 2007

UNIVERSITY OF NORTH*TEXAS

Design of flash ADC

High level block diagram of ADC.Input is analog (generally ramp or sine wave).

Output of Comparator Bank is thermometer code.

Converted to 1-out of n code using 1-out of n code generators.

□ NOR ROM converts the 1-out of n code to binary code.

Ghai, Mohanty & Kougianos 7

Design of flash ADC

V DD For an n-bit ADC we need: V IN 2ⁿ-1 Comparators. COMP 1-out of n code generators. NOR ROM : 2^{n} -1 X n. For discussion purposes,3-bit flash ADC is shown. 6-1-Out Of 7 bit ADC has similar BUFFER BUFFER BUFFER structure. OUT 2 OUT 1 OUT 0 7 x 3 NOR ROM

UNIVERSITY OF

NASA VLSI 2007

Threshold Inverter Quantization Principle

TIQ comparator.
Formed by cascading of digital inverters.
Sizing of transistors determine switching point.

Differential comparator.
Require resistive ladder network.
Area overhead increases.

NASA VLSI 2007

UNIVERSITY OF NORTH*TEXAS

TIQ Comparator

□Formed by four cascaded inverters.

□Provide a sharper switching for the comparator and full voltage swing.

Sizes of PMOS and NMOS in a comparator are same, but different for different

comparators.

NASA VLSI 2007

Transistor sizing

DC parametric sweep is used to determine the transistor sizes.

Input voltage varied from 0 to 0.7V in steps of $500\mu V$.

 \Box W/L for NMOS transistors kept as 90*nm*/90*nm*. L for PMOS transistors kept as 90*nm*. W for PMOS transistors was given a parametric sweep in steps of 1*nm*. Minimum width=51*nm*,maximum width=163*nm*.

UNIVERSITY OF NORTH*TEXAS

Ghai, Mohanty & Kougianos 11

Functional Simulation

□Transient analysis carried out.

 \Box Ramp generated from 296.3*mV* to 327.8*mV*. Digital codes going from 0 to

63 are obtained at the output.

NASA VLSI 2007

UNIVERSITY OF NORTH*TEXAS

Ideal vs Actual Characteristics

□Ideal vs actual transfer function

Due to transistor implementation, actual transfer function never equal to ideal transfer function.

Characterized using DNL and INL.

NASA VLSI 2007

Max DNL of ADC = 0.7LSB

Differential Non-Linearity. Difference between actual step width and ideal value of 1LSB.

□ Modeled as Verilog-A block. Uses histogram method. DNL<1*LSB* ensures monotonicity.

UNIVERSITY OF

Ghai, Mohanty &

Kougianos 14

Max INL of ADC =0.46*LSB*

□Integral No-linearity. Deviation of actual transfer function from a straight line. expressed in *LSB*.

□Verilog-A block used. Slowly varying ramp given as input, covering full scale range in 4096 steps.

UNIVERSITY OF NORTH*TEXAS

Ghai, Mohanty & Kougianos 15

SNDR = 31.9dB

calculated from this.

NASA VLSI 2007

Instantaneous Power Plot

UNIVERSITY OF

(AS[™]

 \Box Peak Power=45.42 μ W.

 \Box Avg. Power=8.8 μ W.

Low power design.

NASA VLSI 2007

Conclusion and Future Works

- Successful ADC design at nano-scale (45*nm*)technology.
- \Box DNL=0.7*LSB*,INL=0.46*LSB*.
- SNDR=31.9dB, Low power design (Avg. Power = $8.8\mu W$).
- Layout using 90*nm* general process design kit.
- □ Scaling the layout rules to perform layout at 45nm.

