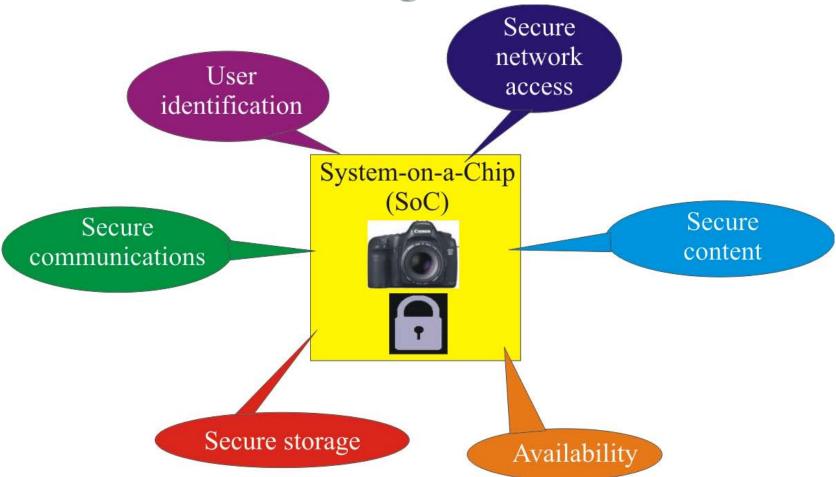
Circuits and Systems for Real-Time DRM of Multimedia

Saraju P. Mohanty
Computer Science and Engineering
University of North Texas.
Email: smohanty@unt.edu

Outline of the Talk

- Digital Rights Management (DRM).
- Our Proposed Secure Digital Camera (SDC) for real-time DRM.
- A Watermarking Chip for the SDC.
- Research Challenges for Security, Power (Battery), and Performance Tradeoffs.
- Application Scenarios for the SDC.
- Conclusions.

Digital Rights Management (DRM)


Mobile Electronic Appliances

- Access, store, and process multimedia.
- Consume power (energy).
- Embedded systems designed as System-on-Chips (SoCs).

5/15/2007

Security Requirements in SoCs: The Big Picture

 Content security is of our interest which will be handled through digital rights management (DRM) facility.

DRM: Definition

Digital Rights Management (DRM) is a generic term that refers to any of several technologies used by publishers, creators, or owners to control access and usage of digital data.

Typically a DRM system:

 Protects intellectual property by encrypting the data so that it can only be accessed by authorized users.
 and/or

Marks the content with a digital watermark so that the content can not be freely distributed.

5/15/2007

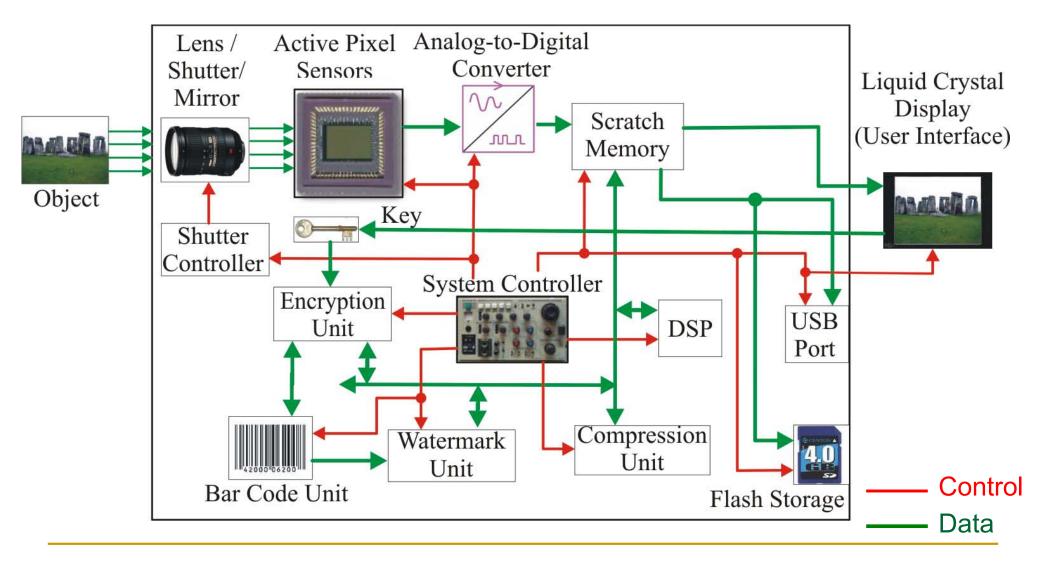
DRM: Definition ...

Watermarking

Cryptography

Judicious use of both encryption and watermarking necessary for multilayer protection through DRM.

5/15/2007

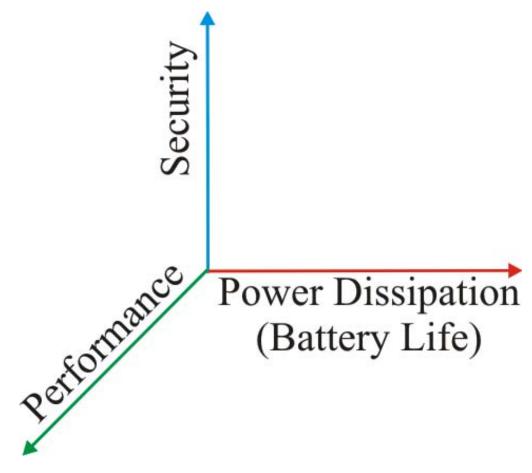

Our Solution for DRM: Secure Digital Camera (SDC)

Secure Digital Camera

- An apparatus built as system-on-a-chip (SoC) with standards features of digital camera and built in facility for real-time, low-cost, low-power DRM.
- For a given image/video SDC needs to prove:
 - Copyright (visible watermarking)
 - Extent of tampering (invisible-fragile watermarking)
 - Source of image i.e. camera information, place, or date (invisible-robust or visible watermarking)
 - Owner's, creator's, or cameraman's information (invisible-robust or visible watermarking)

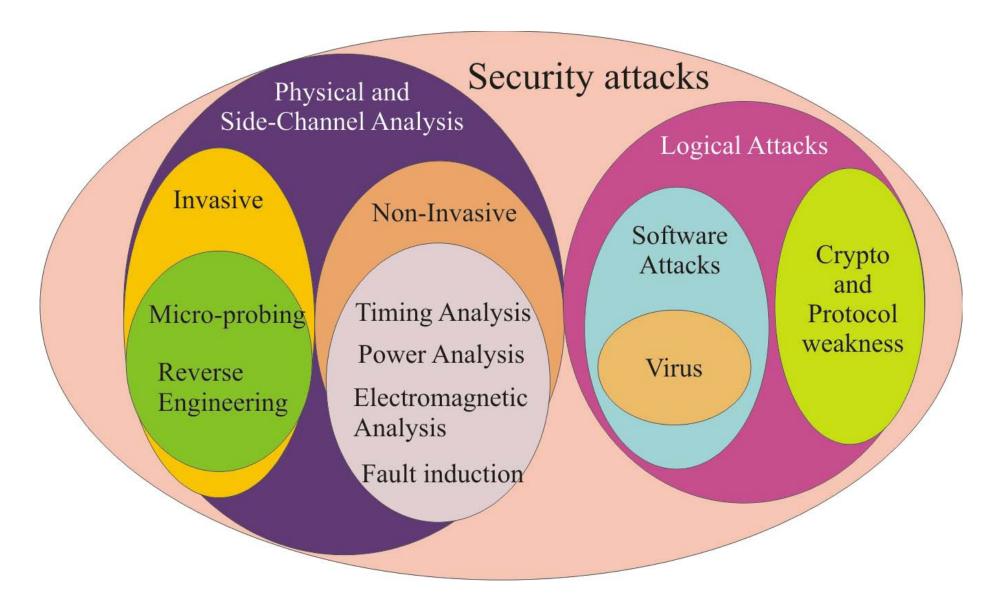
..... and more.

Proposed Secure Digital Camera (System-on-a-Chip : SoC)

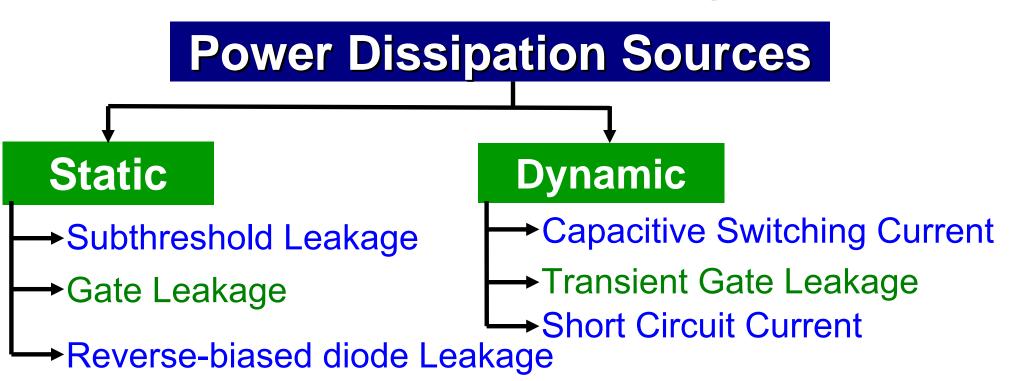


Hardware Based DRM: Advantages

- Easy integration with multimedia hardware, such as digital camera, network processor, GPU, etc.
- Low-power consumption compared to software.
- High-performance compared to software.
- Higher reliability and availability compared to software.
- More useful for real-time applications like digital video broadcasting.
- Low-cost compared to having explicit software.
- DRM right at the source end will ensure that the information is always protected.
- DRM integrated with multimedia creating component will be more acceptable as legal evidence.


System-on-a-Chip Design Challenges for Security, Power, and Performance Tradeoffs

Secure SoC Design Space Exploration



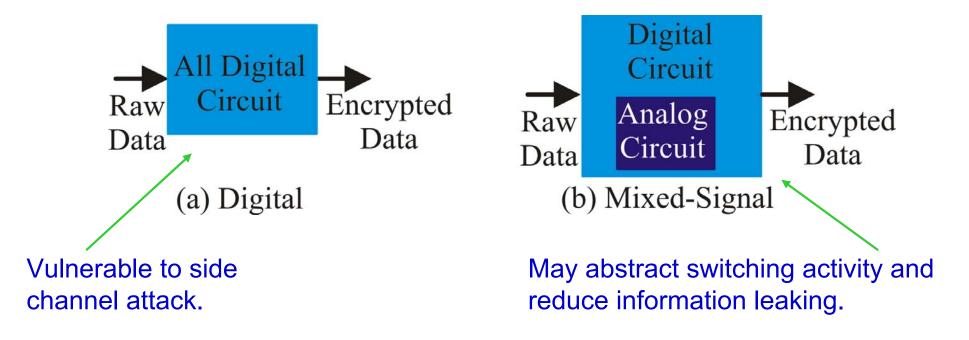
- Multidimensional design space, 3 are shown.
- More the security processing more the energy consumption and slower the performance.

Different Forms of Attacks on SoCs

Power Dissipation in Nano-CMOS Based Circuits and Systems

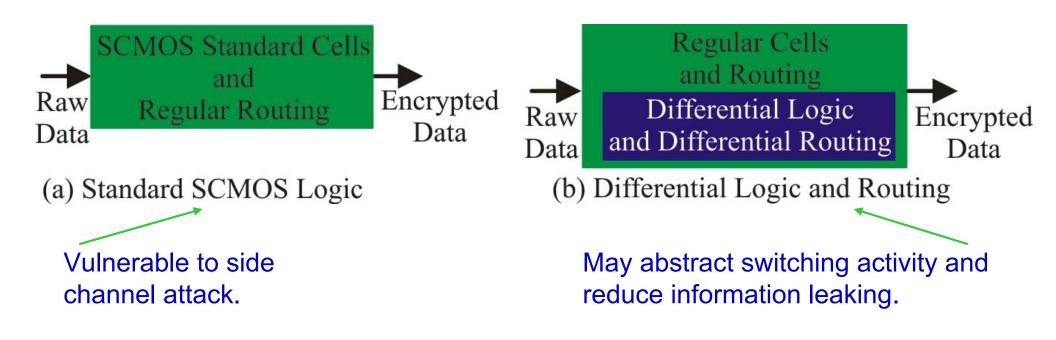
- Almost the entire consumer electronic industry today is driven by nano-CMOS technology.
- Their low-power design is necessary to: reduce energy and cooling costs, to increase battery life, and more.

Secure SoC Design: Two Modes


- Addition of DRM features in SoC:
 - Algorithms
 - Protocols
 - Architectures
 - Accelerators / Engines
- Consideration of DRM as a dimension in the design flow:
 - New design methodology
 - Design automation or computer aided design (CAD) tools for fast design space exploration.

Secure Digital Camera: AMS-SoC Research Challenges

- Development of hardware amenable algorithms.
- Building efficient VLSI architectures.
- Hardware-software co-design for security, power, and performance tradeoffs.
- Analog mixed-signal system-on-a-chip (AMS-SoC) design for security, power, and performance tradeoffs.


Analog-Digital Mixed-Signal Design

- A side channel attack is any attack based on information gained from the physical implementation of an encryption system.
- Static CMOS based circuit implementation are vulnerable to such attacks.

SCMOS Logic and Differential Logic Digital Circuit

 Develop logic styles and routing techniques such that power consumption per cycle is constant and capacitance charged at a node is constant.

Secure Digital Camera: Design Alternatives

- New CMOS sensor with DRM.
- New ADC with DRM.
- Independent DRM (watermarking, encryption, etc.) processors.
- DRM (watermarking, encryption, etc.) coprocessor for DSP.
- New instruction set architecture for RISC to support DRM at micro-architecture level.

A Low-Power Watermarking Chip for the SDC

Our Low-Power Design Approach

Adjust the frequency and supply voltage in a coordinated manner to reduce dynamic power while maintaining performance.

NOTE: We also have developed methods for gate-oxide and subthreshold leakage power reduction.

Highlights of our Proposed Chip

- DCT domain processing.
- First to insert both visible and invisible watermarks.
- First low-power design for watermarking using dual voltage and dual frequency.
- Uses pipelined and parallelization for better performance.
- Uses decentralized controller scheme to indirectly implement clock gating for power reduction.

Algorithms Selected for the Chip

Visible watermarking algorithm:

S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, "A DCT Domain Visible Watermarking Technique for Images", in *Proceedings of the IEEE International Conference on Multimedia and Expo*, 2000, pp. 1029-1032.

Invisible watermarking algorithm:

I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, "Secure Spread Spectrum Watermarking for Multimedia", *IEEE Transactions on Image Processing*, Vol. 6, No. 12, 1997, pp. 1673-1687.

NOTE: Highest cited papers in respective category.

Invisible Watermarking Algorithm: Original Version

- DCT of the entire original image is computed assuming it as one block.
- Perceptually significant regions of the image are selected as the 1000 largest AC coefficients.
- The watermark $X = \{x_1, x_2, ..., x_n\}$ is computed where each x_i is chosen according to N(0, 1), where N(0, 1) denotes a normal distribution with mean 0 and variance 1.
- The watermark is inserted in the DCT domain of the image by setting the frequency components v_i in the original image to v^{*}_i using the following for scalar factor α:

$$v_i^* = v_i (1 + \alpha x_i)$$

Invisible Watermarking Algorithm: Modified Version

- 1. Divide the original image into blocks.
- 2. Calculate the DCT coefficients of all the image blocks.
- Generate random numbers to use as watermark.
- 4. Consider the 3 largest AC-DCT coefficients of an image block for watermark insertion.

Visible Watermarking Algorithm

- 1. Divide original and watermark image into blocks.
- 2. Calculate DCT coefficients of all the blocks.
- 3. Determine the blocks containing edges in the original image.
- 4. Find the local and global statistics (μ, σ) of original image using DC-DCT and AC-DCT coefficients.
- 5. Calculate the scaling and embedding factors.
- 6. Add the original image DCT coefficients and the watermark DCT coefficients block by block.

Visible Watermarking Algorithm ...

- The α_k and β_k for edge blocks are taken to be α_{max} and β_{min} , respectively.
- For non-edge blocks α_k and β_k are computed as:

$$\alpha_{k} = \sigma_{AC_{Ik}}^{*} \left[\exp \left\{ - \left(\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*} \right)^{2} \right\} \right]$$

$$\beta_{k} = \frac{1}{\sigma_{AC_{Ik}}^{*}} \left[1 - \exp \left\{ - \left(\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*} \right)^{2} \right\} \right]$$

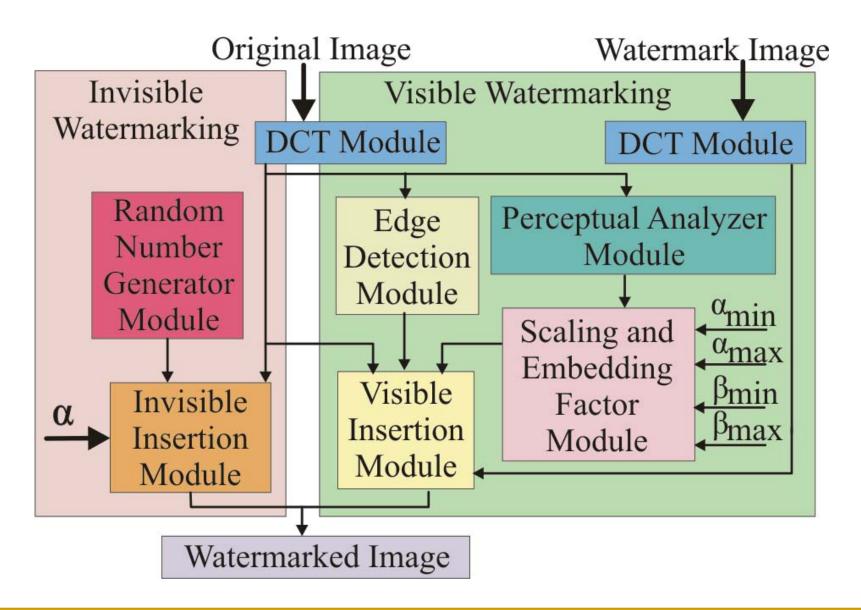
• α_k and β_k are then scaled to the ranges (α_{min} , α_{max}) and (β_{min} , β_{max}), respectively.

Visible Watermarking Algorithm: Modifications

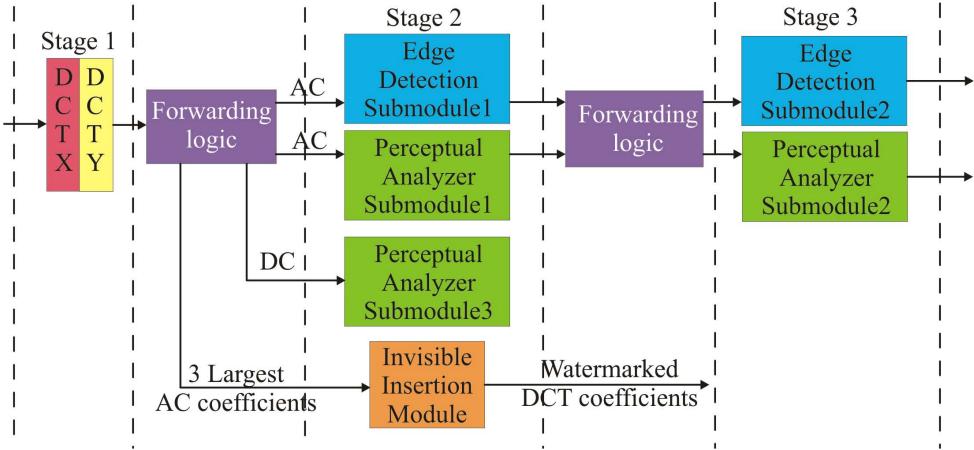
- Use $c_{lwhite}(0,0)$ for normalization instead of $c_{lmax}(0,0)$.

Rewrite
$$\alpha_{k}$$
 and β_{k} equations:
$$\alpha_{k} = \frac{\sigma_{AC_{In}}}{\sigma_{AC_{Im} ax}} \left[\exp \left\{ - (\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*})^{2} \right\} \right]$$
$$\beta_{k} = \frac{\sigma_{AC_{Im} ax}}{\sigma_{AC_{Ik}}} \left[1 - \exp \left\{ - (\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*})^{2} \right\} \right]$$

Remove
$$\sigma_{ACImax}$$
:
$$\begin{bmatrix} \alpha^{c}_{k} = \sigma_{AC_{Ik}} \left[\exp \left\{ - \left(\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*} \right)^{2} \right\} \right] \\ \beta^{c}_{k} = \frac{1}{\sigma_{AC_{Ik}}} \left[1 - \exp \left\{ - \left(\mu_{DC_{Ik}}^{*} - \mu_{DC_{I}}^{*} \right)^{2} \right\} \right] \end{bmatrix}$$


Remove exponential using Taylor series:

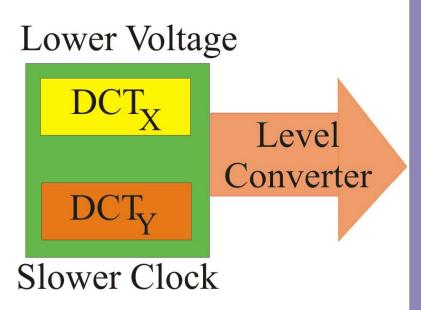
$$\alpha^{c}_{k} = \sigma_{AC_{Ik}} \left\{ 1 - (\mu^{*}_{DC_{Ik}} - \mu^{*}_{DC_{I}})^{2} + (\mu^{*}_{DC_{Ik}} - \mu^{*}_{DC_{I}})^{4} \right\}$$


$$\beta^{c}_{k} = \frac{1}{\sigma_{AC_{Ik}}} \left\{ (\mu^{*}_{DC_{Ik}} - \mu^{*}_{DC_{I}})^{2} - (\mu^{*}_{DC_{Ik}} - \mu^{*}_{DC_{I}})^{4} \right\}$$

• Scale to the ranges $(\alpha_{\min}, \alpha_{\max})$ and $(\beta_{\min}, \beta_{\max})$, respectively.

The Proposed Architecture

The Proposed Architecture: Pipeline and Parallelism

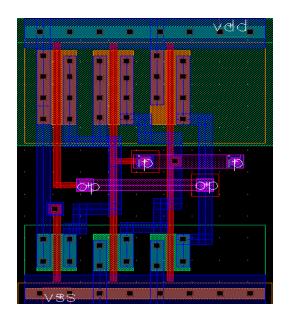


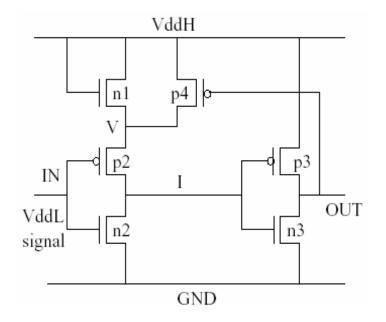
• The visible architecture has 3 stage pipeline and the invisible architecture has 2 stage pipeline.

5/15/2007

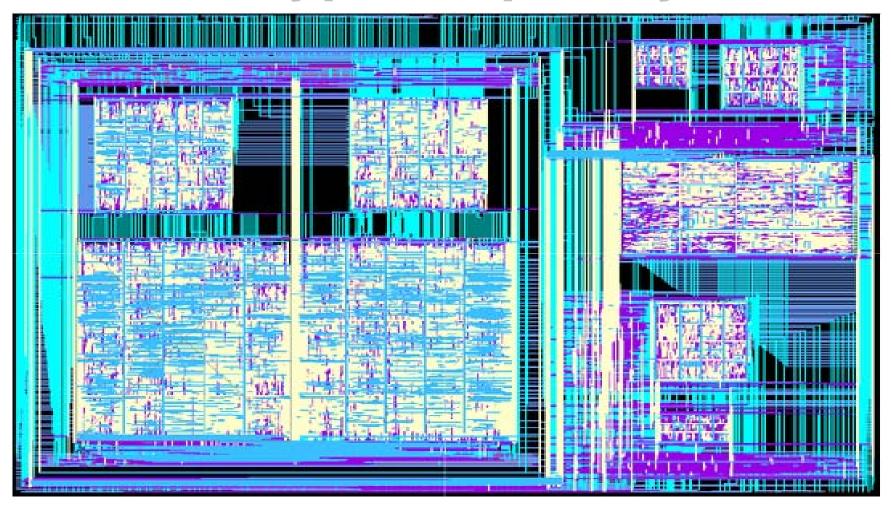
The Proposed Architecture: Dual Voltage and Frequency

Normal Voltage




Edge Detection Module
Perceptual Analyzer
Module
Scaling and Embedding
Factor Module
Visible Watermark
Insertion Module
Invisible Watermark
Insertion Module

Normal Clock


Dual Voltage: Level Converters

- Level converters are required to step up the low voltage to high voltage.
- Single supply level converter is used as it is faster and consumes less power for its operation.

Prototype Chip: Layout

NOTE: Standard cell design style adopted. Low-power cells are created based on Virginia Tech: TSMC 0.25µm library.

Prototype Chip: Statistics

Technology: TSMC 0.25µm

Total Area: 16.2 sq-mm

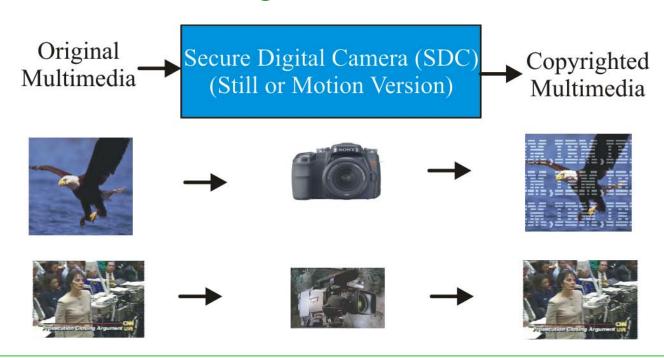
Dual Clocks: 284MHz and 71MHz

Dual Voltages: 2.5V and 1.5V

No. of Transistors: 1.4million

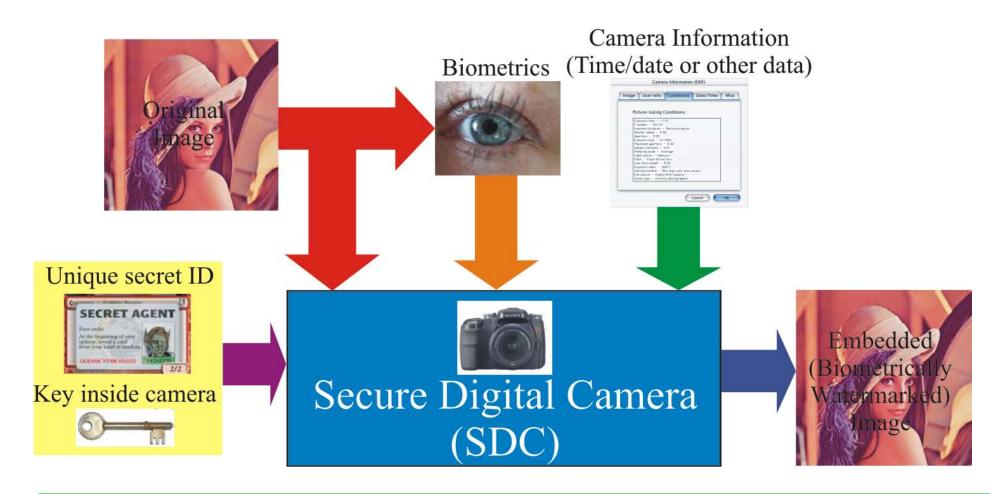
Power Consumption: 0.3mW

NOTE: Lowest power consuming watermarking chip available at present.


Existing Watermarking Chips

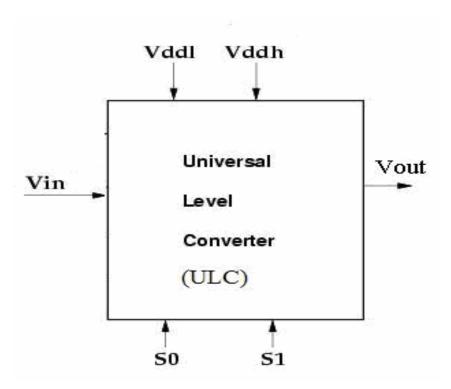
Work	Туре	Target Object	Domain	Technology	Chip Power
Strycker 2000	Invisible Robust	Video	Spatial	NA	NA
Tsai and Lu 2001	Invisible Robust	Video	DCT	0.35µ	62.8mW
Mathai 2003	Invisible Robust	Image	Wavelet	0.18µ	NA
Mohanty 2003	Robust Fragile	Image	Spatial	0.35µ	2.05mW
This Chip	Visible Invisible	Image	DCT	0.25µ	0.3mW

Secure Digital Camera (SDC): Some Application Scenarios


Application: Copyright Protection

- Publicly available images
- Digital Library
- DVD Video
- Digital TV Broadcasting

NOTE: Can enhance revenue of movie/broadcasting industry.


Application: Biometric Based Authentication

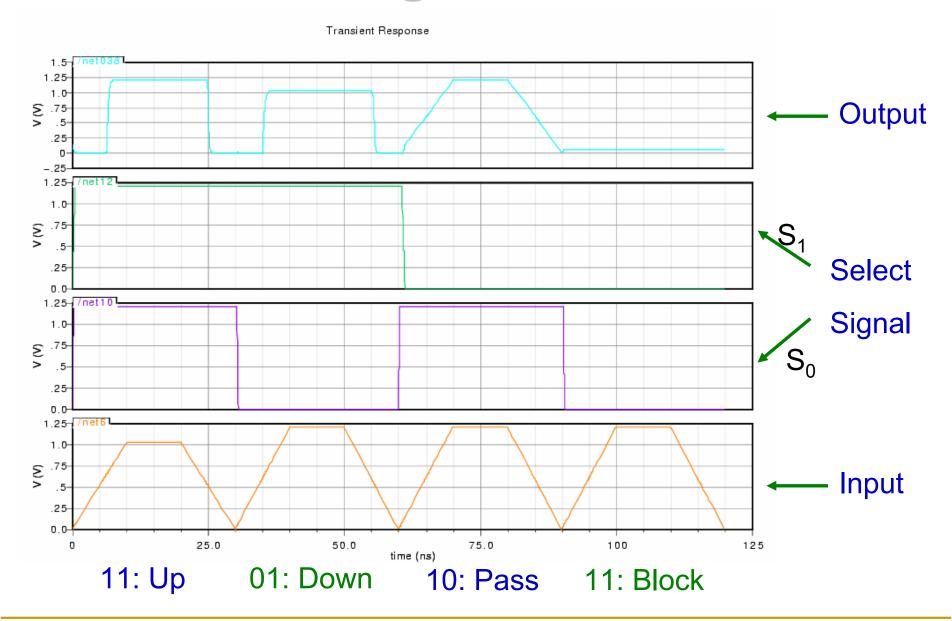
NOTE: Can be useful for **homeland security**, e-passport.

Our Ongoing Research in Mixed-Signal Circuits

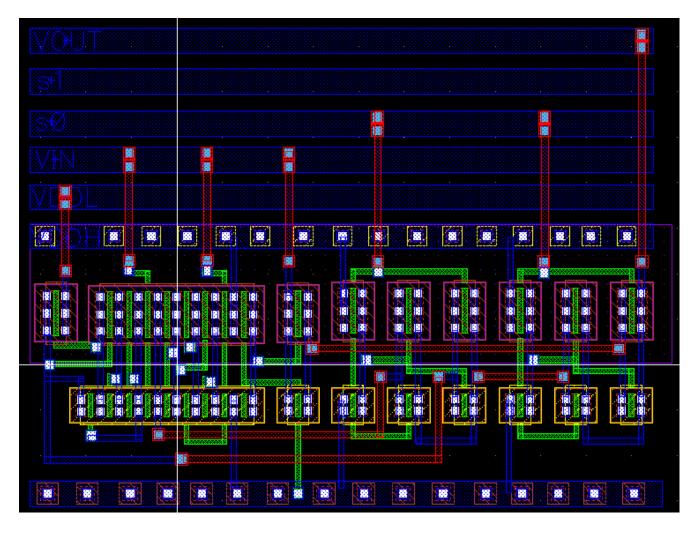
Universal Voltage Level Converter

Single circuit performing 4 operations:

- -Step-up
- -Step-down
- Pass signal
- Block signal

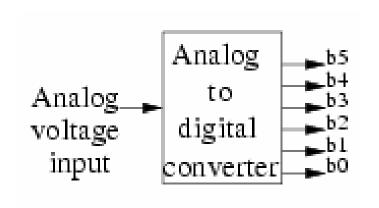

Goals:

- Power efficient design with minimal number of transistors.
- Minimal dynamic, subthreshold, and gate-oxide leakage power.


Applications:

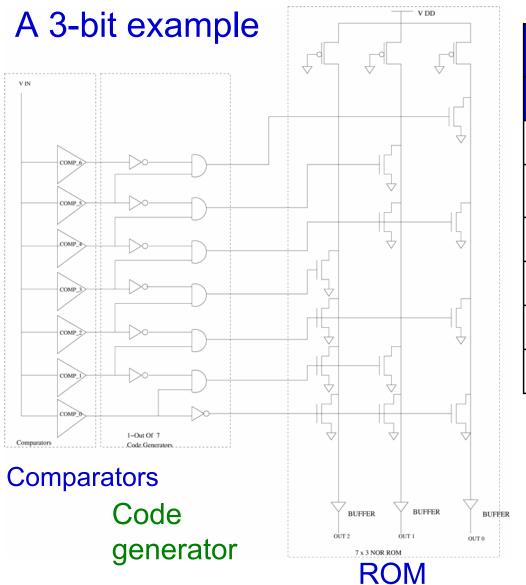
Multi-V_{DD} based AMS-SoCs.

Universal Voltage Level Converter ...



Universal Voltage Level Converter ...

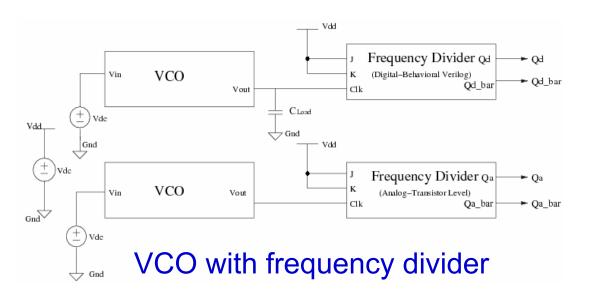
- gpdk_90nm technology from Cadence.
- Works under varying load from 1fF -200fF and at low voltages as 0.6V.
- Consumes power of 24.8μW.

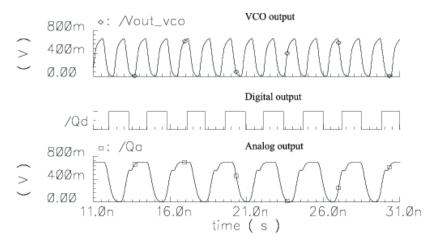

Analog-to-Digital Converter

Parameters	Specification	
	90nm GPDK	45nm PTM
Resolution	6-bit	6-bit
Architecture	Flash	Flash
Power Supply	1.2V	0.7V
V_{LSB}	1.0mV	500µV

- An n-bit flash ADC requires the design of $2^n 1$ comparators, 1-out of n code generators and a $2^n 1$ xn NOR ROM.
- Flash ADC designed using threshold inverter quantization (TIQ) technique is simpler and faster; suitable for low-power, low-voltage, and high-speed SoCs.
- Applications: Interface element in mixed-signal circuits.

Analog-to-Digital Converter ...

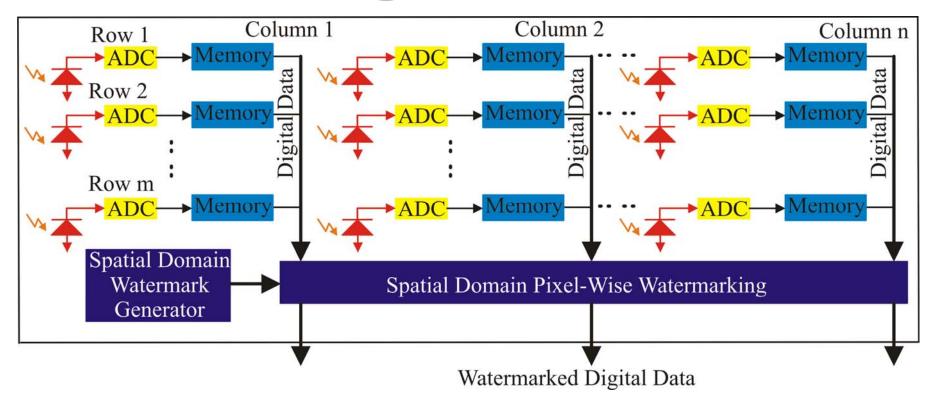



Characterization			
	90nm GPDK	45nm PTM	
Speed	1Gs/sec	1Gs/sec	
DNL	0.47LSB	0.7LSB	
INL	0.34LSB	0.46LSB	
SNDR	30.4dB	31.9dB	
Power _{Peak}	4.87mW	45.42µW	
Power _{Avg}	3.8 <i>7</i> W	8.8µW	

Goals:

Process-variation tolerant ADC.

Voltage Controlled Oscillator



Output waveforms of the VCO and digital and analog frequency divider.

- It is seen that there is a 10% difference in the simulation results, depending on whether the frequency divider is considered as analog or digital.
- It is observed that 80% of the capacitive load is due to gate oxide tunneling and only 20% due to traditional gate capacitance when simulated for 45nm PTM.

Secure Digital Pixel Sensors

- Spatial-domain pixel-wise watermarking schemes will have less computational overhead.
- Additional circuitry will have minimal power dissipation overhead.
- Goal: Simulation and Optimization approaches for fast and accurate AMS-SoC design space exploration.

Conclusions

Summary

- A low-cost, low-power camera is introduced that can perform DRM in real time.
- Hardware assisted DRM has several advantages over software only.
- Structure of SoCs that will realize the secure digital camera is an ongoing research.
- A low-power watermarking chip is designed that consumes 0.3mW power.
- SDC to be realized as an SoC will involve security, power, and performance tradeoffs.
- Design automation or computer-aided design (CAD) tools would be necessary for fast and automatic AMS-SoC design space exploration.

References

- **S. P. Mohanty**, et al., "VLSI Architecture of an Invisible Watermarking Unit for a Biometric-Based Security System in a Digital Camera," in *Proceedings of the 25th IEEE International Conference on Consumer Electronics (ICCE)*, 2007.
- O. B. Adamo, S. P. Mohanty, E. Kougianos, and M. Varanasi, "VLSI Architecture for Encryption and Watermarking Units Towards the Making of a Secure Digital Camera," in *Proceedings of the IEEE International SOC Conference (SOCC)*, pp. 141-144, 2006.
- **S. P. Mohanty**, et al., "A Dual Voltage-Frequency VLSI Chip for Image Watermarking in DCT Domain," *IEEE Transactions on Circuits and Systems II (TCAS-II)*, Vol. 53, No. 5, May 2006, pp. 394-398.
- N. M. Kosaraju, M. Varanasi, and S. P. Mohanty, "A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm," in *Proceedings of the 19th IEEE International Conference on VLSI Design (VLSID)*, pp. 481-484, 2006.

References ...

- S. Ravi, A. Raghunathan, P. Kocher, S. Hattangady, "Security in Embedded Systems: Design Challenges," ACM Transactions on Embedded Computing Systems (TECS), Volume 3, Issue 3, August 2004, pp. 461 – 491.
- **S. P. Mohanty**, et al., "A VLSI Architecture for Visible Watermarking in a Secure Still Digital Camera (S²DC) Design," *IEEE Transactions on VLSI Systems (TVLSI)*, Vol. 13, No. 8, Aug 2005, pp. 1002-1012.
- G. R. Nelson, et al., "CMOS Image Sensor with Watermarking Capabilities," in *Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS)*, 2005, pp. 5326-5329.
- P. Blythe and J. Fridrich, "Secure Digital Camera," in Proceedings of Digital Forensic Research Workshop (DFRWS), 2004.
- R. Puri et. al., "Pushing ASIC Performance in a Power Envelope," in the *Proceedings of the Design Automation Conference (DAC)*, 2003, pp. 788-793.

References ...

- S. P. Mohanty, N. Ranganathan, and R. K. Namballa, "VLSI Implementation of Invisible Digital Watermarking Algorithms Towards the Development of a Secure JPEG Encoder," in the *Proceedings of the IEEE Workshop on Signal Processing System*, pp. 183-188, 2003.
- D. Hwang, K. Tiri, A. Hodjat, B.C. Lai, S. Yang, P. Schaumont, I. Verbauwhede, "A AES-Based Security Coprocessor IC in 0.18-μm CMOS with Resistance to Differential Power Analysis Side-Channel Attacks", IEEE Journal of Solid-State Circuits (JSSC), vol.44, issue 4, pp.781-792, 2006.
- K. Tiri, and I. Verbauwhede, "A Digital Design Flow for Secure Integrated Circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.25, no.7, pp.1197-1208, 2006.
- http://www.iprsystems.com, http://www.trl.ibm.com/projects/RightsManagement/datahiding/index_e .htm,http://www.ctr.columbia.edu/~cylin/vismark/vismark.html, and more web sites

Thank You

For more information: http://www.cse.unt.edu/~smohanty