
8 December 2005
VLSI Design 2006

1

A High-Performance VLSI
Architecture for Advanced

Encryption Standard (AES) Algorithm

N. M. Kosaraju, M. Varanasi & Saraju P. Mohanty
VLSI Design and CAD Laboratory

Homepage: http://www.vdcl.cse.unt.edu
University of North Texas, Denton, TX, USA.

Email: smohanty@cs.unt.edu

8 December 2005
VLSI Design 2006

2

Outline of the Talk

• Introduction
• The Rijndael Algorithm
• Related Work
• Proposed Architecture
• Prototype Implementation
• Performance Analysis
• Conclusions

8 December 2005
VLSI Design 2006

3

Introduction

• Techniques like cryptography, steganography,
watermarking, and scrambling, have been
developed to keep data secure, private, and
copyright protected.

• The need for secure transactions in ecommerce,
private networks, and secure messaging has
moved encryption into the commercial realm.

• In October 2000, Rijndael, developed by Joan
Daemen and Vincent Rijmen was announced as
the new encryption standard replacing data
encryption standard (DES).

8 December 2005
VLSI Design 2006

4

Rijndael Algorithm

• Rijndael algorithm is an iterative, symmetric
block cipher with variable block length and
variable key length.

• The number of rounds in the algorithm depends
on the block length and the key length.

• The block length is specified to 128 bits (by
NIST) and the key length can be either 128, 192
or 256 bits.

• The data block (B) and the key (K) are split into
array of bytes (called State) and are represented
in matrices arranged in a column major order.

8 December 2005
VLSI Design 2006

5

Principle of Rijndael Algorithm

Initial Round
Round Key Addition

Basic Round
ByteSub
ShiftRow

MixColumn
Round Key Addition

Final Round
ByteSub
ShiftRow

Round Key Addition

Nr-1
rounds

Round Key
[0]

Round Key
[round]

Round Key
[Nr]

Plain Text

Cipher Text

3 distinct phases
1. An initial data/key

addition.
2. Nine (128-bits),

eleven (192-bits) or
thirteen (256-bits)
standard rounds.
Each round has a
new round key with
expanded key length
Nb(Nr-1).

3. A final round

8 December 2005
VLSI Design 2006

6

Order of Operations in
Encryption and Decryption

INV Multiplicative Inverse, LT Linear Transformation, SR Shift Row,
MC Mix Column, KA Key Addition, Nr = 10 for 128-bit input, key length

Initial Key

KA INV LT SR MC KA INV LT SR KA

Round Key Final Key

Normal Round
(Nr – 1 times)

Initial
Round

Final Round

Cipher
Text

Plain
Text

Encryption

Cipher
Text KA

Initial
Round

Final Key DecryptionInitial Key

SR LT INV KA
Final Round

Round Key

SR LT INV KA MC
Normal Round
(Nr – 1 times)

Plain
Text

8 December 2005
VLSI Design 2006

7

Related Work
(Architectures for Rijndael)

• Kuo and Verbauwhede [2001]:
– Encryption module to generate intermediate data.
– A key scheduling module to generate the round keys.
– Data encryption done at a rate of 1.82Gbps.

• McLoone and McCanny [2001]:
– High performance single - chip FPGA implementation.
– Supports different key sizes.
– 192-bit key design run at 5.8Gbps & 256-bit key design run at 5.2Gbps.

• Mangard, et. al. [2003]:
– Combinational paths are relatively short and balanced.
– S-boxes have pipelined implementation using combinational logic.
– The high performance versions achieved 241Mbps.

• Sodon, et. al. [2005]:
– A low cost architecture using bit-serial approach.
– FPGA based prototype has a maximum clock frequency of 510MHz with

a throughput of 0.37Gbs.

8 December 2005
VLSI Design 2006

8

Salient Features of our Architecture
• A high performance, high throughput and area efficient

VLSI architecture.
• Architecture is optimized for high throughput in terms of

the encryption and decryption data rates using pipelining.
• Polynomial multiplication is implemented using XOR

operation instead of using multipliers to decrease the
hardware complexity.

• Both encryption and decryption modes use common
hardware resources, thus making the architecture and
corresponding implementation area efficient.

• Selective use of look-up tables and combinational logic
further enhances the architecture’s memory optimization,
area, and performance.

• An effective solution of online (real-time) round key
generation needing significantly less storage for buffering.

8 December 2005
VLSI Design 2006

9

Architecture : Data and Control Flow

•Architecture
consists of data unit
and key unit.

•Data Unit: (i) byte
substitution, (ii) shift
row, (iii) mix
column, and (iv)
round key addition

•Key Unit: Key
scheduling and
expansion.

Data and Control Flow

Output

Initial
Key

Encryption/
Decryption

ByteSub
Transformation

ShiftRow
Transformation

AddRoundKey
Transformation

Final Round/
Initial Round

MixColumn
Transformation

Input

8 December 2005
VLSI Design 2006

10

Architecture : Modes of Operation

• Different modes of operations in which the block
cipher algorithm can be implemented are :

– Electronic Code Book Mode (ECB)
– Cipher Back Chaining Mode (CBC)
– Cipher Feed-Back Mode (CFB)
– Output Feed-Back Mode (OFB)

• For modes with feedback operations, pipelined
design has no additional advantage since the
encryption depends on the previous results.

– ECB mode of operation is chosen for our
implementation.

8 December 2005
VLSI Design 2006

11

Architecture: Pipelining and Looping

• The Rijndael algorithm is implemented in
hardware considering the basic concepts:
– Pipelining: Replicating same rounds and

placing registers in between.
• Advantage: Increases the throughput.

– Iterative Looping: One round of hardware
design, which forces the algorithm to reuse
the same hardware.

• Advantage: Reduces the amount of area.

8 December 2005
VLSI Design 2006

12

Operations Needed in Architecture

1. Byte Substitution Transformation
2. Shift Row Transformation
3. Mix Column Transformation
4. Key Addition Transformation

8 December 2005
VLSI Design 2006

13

Architecture : Byte substitution
• The Byte Substitution transformation is applied to

each byte individually and is a nonlinear byte-
wise substitution. It consists of two phases:

– Multiplicative inverse of a state byte in GF(28)
– An affine/inverse affine mapping transformation over

GF(2) for encryption/decryption

Encryption
Multiplicative
inverse over

GF(28)

Linear affine
mapping

over GF(28)

Decryption
Multiplicative
inverse over

GF(28)

Inverse linear
affine mapping

over GF(28)

8 December 2005
VLSI Design 2006

14

Architecture : Shift Row

• The rows of the state matrix are cyclically shifted
to the left during encryption and to the right
during decryption by certain offset for each row.

– For a data block of length 128-bits, the offsets for
each row are as follows:

• Row 0 is shifted by 0 bytes
• Row 1 is shifted by 1 byte
• Row 2 is shifted by 2 bytes
• Row 3 is shifted by 3 bytes

– Shift Row transformation is implemented using
combinational logic instead of look-up tables which
allows for area minimization

8 December 2005
VLSI Design 2006

15

Architecture : Mix Column
• Mix Column transformation is applied to columns of the

state matrix, each column being considered as a
polynomial over GF(28).
– During encryption, each column is multiplied by a fixed

polynomial.
– During decryption, each column is multiplied by a fixed

polynomial.
• The multiplication by fixed polynomials over GF(28) is

implemented using XOR operation instead of the
multipliers.

• The inverse mix column transformation is more complex
than the mix column transformation, as the coefficients
involved in the decryption polynomial are of higher order.

8 December 2005
VLSI Design 2006

16

Architecture : Mix Column

Computation of Y or Z

IN0

XOR

Encryption /
Decryption

8

IN1

XOR XOR

XOR MULT()

8

IN2
8

XOR XOR
IN3

8

XOR

MULT()

8
T0

MULT()

MULT()

XOR

8
T1

Y or Z

IN[i mod 4] 8

IN[(i+1) mod 4]
8

XOR

MULT()

XOR

Y or Z

XOR

OUT[i mod 4]

Computation of Output

NOTE: MULT() is the
multiplication of the byte by X
over GF(28).

8 December 2005
VLSI Design 2006

17

Architecture : Round Key Addition

• The state bytes and the appropriate round key
generated by the key scheduling module are
XORed.

XOR

B00(i)K00(i)

B00(i+1)

XOR

B01(i)K01(i)

B01(i+1)

XOR

B02(i)K02(i)

B02(i+1)

XOR

B31(i)K31(i)

B31(i+1)

XOR

B32(i)K32(i)

B32(i+1)

XOR

B33(i)K33(i)

B33(i+1)

…

Byte-1 Byte-2 Byte-3 Byte-14 Byte-15 Byte-16

8 December 2005
VLSI Design 2006

18

Architecture : Different Rounds

• Standard round
architecture has all four
transformations:

1. Byte Substitution
2. Shift Row
3. Mix Column
4. Round Key Addition

• Initial Round has (4)
• Final Round has (1), (2), (4)

ByteSub
Multiplicative inverse
8 * 256 ROM cells

Affine
Mapping

MUX Block

128

Inverse Affine
MappingMUX

ShiftRow

MixColumn
MUX Block XOR Block

RoundKeyAddition
Round KeyXOR Block

128

8 December 2005
VLSI Design 2006

19

Architecture : Key Generation

• Key Generation has two parts
– Key Expansion

• The initial key is represented as a linear array W,
where K0=(W0,W1,W2,W3)

• The initial key is expanded into a linear array of 32-
bit words of length Nb * (Nr -1).

– Key Scheduling
• A round key of length 128 bits generated in every

clock cycle is given as input to the data unit of the
encryption/ decryption module.

8 December 2005
VLSI Design 2006

20

Architecture : Key Generation

MUX

Register 0

MUX

Register 1

MUX

Register 2

MUX

Register 3

M
U
X

M
U
X

M
U
X

128

Initial
key 0 32

S-box

Left shift

MUX

Round
constant

enc/dec

Initial /
normal

Encryption

Decryption

Initial /
normal

Initial /
normal

Initial /
normal

enc/dec enc/dec

Round
key 0

Round
key 1

Round
key 2

Round
key 3

128

enc/dec

32 32 32
Initial
key 1

Initial
key 2

Initial
key 3

8 December 2005
VLSI Design 2006

21

Architectural Analysis
• The forward and the reverse key scheduling is

implemented on the same device, thus allowing for area
minimization.

• The generation of round key for each round takes 1 clock
cycle.

• Decryption requires more cycles than encryption because
it needs pre-scheduling to generate the last key value and
the Inverse Mix Column transformation has a longer
critical path compared to the Mix Column transformation.

• Round Keys are generated during the process when
required, thus reducing the amount of storage for the
buffer.

• Some of the modules need to be duplicated to get all the
required operations done in one clock cycle for one round.

8 December 2005
VLSI Design 2006

22

Resource Sharing between
Encryption and Decryption

Inverse Affine Mapping

S-boxes

Affine Mapping Inverse Shift Row

Key Addition

Inverse Mix Column

Shift Row

Mix Column

Key Addition

Key
Scheduling

Cipher Text
Plain Text

8 December 2005
VLSI Design 2006

23

Prototype Implementation : Layouts

Multiplicative Inverse Affine and Inverse Affine Mapping

Key Alignment

• The proposed architecture is custom designed using Cadence Virtuoso
design layout with 0.35µ CMOS technology.

• The simulation tools used are Hspice.

8 December 2005
VLSI Design 2006

24

Prototype Implementation : Summary

NA60128-bit Multiplexers

NA432-bit Multiplexers
NA432-bit Registers
NA4S-Boxes

Key Unit
160Multipliers

NA18032-bit Multiplexers
384240Multiplexers
16832-bit Registers
1616S-Boxes

Data Unit
Mangard et al. [7]Our ArchitectureModule / Component

8 December 2005
VLSI Design 2006

25

Prototype Implementation :
Performance

24134Mangard et al [7] –
High Performance

12864Mangard et al [7] -
Standard

23211Proposed
Architecture

Throughput (Mbps)Clock CyclesArchitecture

• Throughput = (Block length * Clock Frequency) / (Cycles
per Block).

• Pipelined version of our architecture has throughput of
1.83Gbps

8 December 2005
VLSI Design 2006

26

Conclusions
• A VLSI architecture for the Rijndael, AES

algorithm is presented.
• The key length and the data block length are

specified to 128 bits.
• Feedback and pipelining architectures were

used for the implementation.
• The algorithm was implemented in the ECB

mode of operation.
• Pipelined architecture could process data at

1.83 Gbits/sec

8 December 2005
VLSI Design 2006

27

Thank You!

