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Introduction

• Techniques like cryptography, steganography, 
watermarking, and scrambling, have been 
developed to keep data secure, private, and 
copyright protected.

• The need for secure transactions in ecommerce, 
private networks, and secure messaging has 
moved encryption into the commercial realm.

• In October 2000, Rijndael, developed by Joan 
Daemen and Vincent Rijmen was announced as 
the new encryption standard replacing data 
encryption standard (DES).
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Rijndael Algorithm

• Rijndael algorithm is an iterative, symmetric 
block cipher  with variable block length and 
variable key length.

• The number of rounds in the algorithm depends 
on the block length and the key length.

• The block length is specified to 128 bits (by 
NIST) and the key length can be either 128, 192 
or 256 bits.

• The data block (B) and the key (K) are split into 
array of bytes (called State) and are represented 
in matrices arranged in a column major order.
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Principle of Rijndael Algorithm
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Order of Operations in 
Encryption and Decryption
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Related Work
(Architectures for Rijndael)

• Kuo and Verbauwhede [2001]:
– Encryption module to generate intermediate data. 
– A key scheduling module to generate the round keys.
– Data encryption done at a rate of 1.82Gbps.

• McLoone and McCanny [2001]:
– High performance single - chip FPGA implementation. 
– Supports different key sizes.
– 192-bit key design run at 5.8Gbps & 256-bit key design run at 5.2Gbps.

• Mangard, et. al. [2003]:
– Combinational paths are relatively short and balanced.
– S-boxes have pipelined implementation using combinational logic. 
– The high performance versions achieved 241Mbps.

• Sodon, et. al. [2005]:
– A low cost architecture using bit-serial approach. 
– FPGA based prototype has a maximum clock frequency of 510MHz with 

a throughput of 0.37Gbs.
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Salient Features of our Architecture
• A high performance, high throughput and area efficient 

VLSI architecture.
• Architecture is optimized for high throughput in terms of 

the encryption and decryption data rates using pipelining. 
• Polynomial multiplication is implemented using XOR 

operation instead of using multipliers to decrease the 
hardware complexity. 

• Both encryption and decryption modes use common 
hardware resources, thus making the architecture and 
corresponding implementation area efficient. 

• Selective use of look-up tables and combinational logic 
further enhances the architecture’s memory optimization, 
area, and performance. 

• An effective solution of online (real-time) round key 
generation needing significantly less storage for buffering.
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Architecture : Data and Control Flow

•Architecture 
consists of data unit 
and key unit. 

•Data Unit: (i) byte 
substitution, (ii) shift 
row, (iii) mix 
column, and (iv) 
round key addition

•Key Unit: Key 
scheduling and 
expansion.

Data and Control Flow
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AddRoundKey
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Final Round/
Initial Round
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Architecture : Modes of Operation

• Different modes of operations in which the block 
cipher algorithm can be implemented are :

– Electronic Code Book Mode (ECB)
– Cipher Back Chaining Mode (CBC)
– Cipher Feed-Back Mode  (CFB)
– Output Feed-Back Mode  (OFB)

• For modes with feedback operations, pipelined 
design has no additional advantage since the 
encryption depends on the previous results.

– ECB mode of operation is chosen for our 
implementation.
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Architecture: Pipelining and Looping

• The Rijndael algorithm is implemented in 
hardware considering the basic concepts:
– Pipelining:  Replicating same rounds and 

placing registers in between.
• Advantage: Increases the throughput.

– Iterative Looping:  One round of hardware 
design, which forces the algorithm to reuse 
the same hardware.

• Advantage: Reduces the amount of area.
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Operations Needed in Architecture

1. Byte Substitution Transformation 
2. Shift Row Transformation
3. Mix Column Transformation
4. Key Addition Transformation
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Architecture : Byte substitution
• The Byte Substitution transformation is applied to 

each byte individually and is a nonlinear byte-
wise substitution. It consists of two phases:

– Multiplicative inverse of a state byte in GF(28)
– An affine/inverse affine mapping transformation over 

GF(2) for encryption/decryption 

Encryption
Multiplicative 
inverse over 

GF(28)

Linear affine 
mapping 

over GF(28)

Decryption
Multiplicative 
inverse over 

GF(28)

Inverse linear 
affine mapping 

over GF(28)
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Architecture : Shift Row

• The rows of the state matrix are cyclically shifted 
to the left during encryption and to the right 
during decryption by certain offset for each row.

– For a data block of length 128-bits, the offsets for 
each row are as follows:

• Row 0 is shifted by 0 bytes
• Row 1 is shifted by 1 byte
• Row 2 is shifted by 2 bytes
• Row 3 is shifted by 3 bytes

– Shift Row transformation is implemented using 
combinational logic instead of look-up tables which 
allows for area minimization 
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Architecture : Mix Column
• Mix Column transformation is applied to columns of the 

state matrix, each column being considered as a 
polynomial over GF(28).
– During encryption, each column is multiplied by a fixed 

polynomial.
– During decryption, each column is multiplied by a fixed 

polynomial.
• The multiplication by fixed polynomials over GF(28) is 

implemented using XOR operation instead of the 
multipliers. 

• The inverse mix column transformation is more complex 
than the mix column transformation, as the coefficients 
involved in the decryption polynomial are of higher order.
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Architecture : Mix Column
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Architecture : Round Key Addition

• The state bytes and the appropriate round key 
generated by the key scheduling module are 
XORed.
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Architecture : Different Rounds

• Standard round 
architecture has all four 
transformations:

1. Byte Substitution
2. Shift Row
3. Mix Column
4. Round Key Addition

• Initial Round has (4)
• Final Round has (1), (2), (4)

ByteSub
Multiplicative inverse
8 * 256    ROM cells 

Affine 
Mapping

MUX Block

128

Inverse Affine 
MappingMUX

ShiftRow

MixColumn
MUX Block XOR Block

RoundKeyAddition
Round KeyXOR Block

128
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Architecture : Key Generation

• Key Generation has two parts
– Key Expansion

• The initial key is represented as a linear array  W, 
where K0=(W0,W1,W2,W3)

• The initial key is expanded into a linear array of 32-
bit words of length Nb * (Nr -1 ).

– Key Scheduling
• A round key of length 128 bits generated in every 

clock cycle is given as input to the data unit of the 
encryption/ decryption module.
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Architecture : Key Generation
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Architectural Analysis
• The forward and the reverse key scheduling is 

implemented on the same device, thus allowing for area 
minimization.

• The generation of round key for each round takes 1 clock 
cycle. 

• Decryption requires more cycles than encryption because 
it needs pre-scheduling to generate the last key value and 
the Inverse Mix Column transformation has a longer 
critical path compared to the Mix Column transformation. 

• Round Keys are generated during the process when 
required, thus reducing the amount of storage for the 
buffer.

• Some of the modules need to be duplicated to get all the 
required operations done in one clock cycle for one round.
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Resource Sharing between 
Encryption and Decryption

Inverse Affine Mapping

S-boxes

Affine Mapping Inverse Shift Row

Key Addition

Inverse Mix Column

Shift Row

Mix Column

Key Addition

Key
Scheduling

Cipher Text
Plain Text



8 December 2005
VLSI Design 2006

23

Prototype Implementation : Layouts

Multiplicative Inverse Affine and Inverse Affine Mapping

Key Alignment

• The proposed architecture is custom designed using Cadence Virtuoso 
design layout with 0.35µ CMOS technology. 

• The simulation tools used are Hspice.
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Prototype Implementation : Summary

NA60128-bit Multiplexers

NA432-bit Multiplexers
NA432-bit Registers
NA4S-Boxes

Key Unit
160Multipliers

NA18032-bit Multiplexers
384240Multiplexers
16832-bit Registers
1616S-Boxes

Data Unit
Mangard et al. [7]Our ArchitectureModule / Component
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Prototype Implementation : 
Performance

24134Mangard et al [7] –
High Performance

12864Mangard et al [7] -
Standard

23211Proposed 
Architecture

Throughput (Mbps)Clock CyclesArchitecture

• Throughput = (Block length * Clock Frequency) / (Cycles 
per Block).

• Pipelined version of our architecture has throughput of 
1.83Gbps
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Conclusions
• A VLSI architecture for the Rijndael, AES 

algorithm is presented.
• The key length and the data block length are 

specified to 128 bits.
• Feedback and pipelining architectures were 

used for the implementation.
• The algorithm was implemented in the ECB 

mode of operation.
• Pipelined architecture could process data at  

1.83 Gbits/sec
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Thank You!


