Design of a Image Watermarking Low-Power Chip

Saraju P. Mohanty VLSI Design and CAD Laboratory (VDCL) Dept of Computer Science and Engineering University of North Texas. Email: smohanty@cse.unt.edu

Outline of the Talk

- Introduction
- Why Low Power ?
- Related Works
- Watermarking Algorithms
- Proposed Architecture
- Prototype Chip Implementation
- Conclusions

driven by CMOS technology.

Static Dissipation

Dynamic Dissipation

→Sub-threshold Leakage

→Gate Leakage

Capacitive Switching Current

→Transient Gate Leakage
→Short Circuit Current

→ Reverse-biased diode Leakage

Our Low-Power Design Approach

Adjust the frequency and supply voltage in a co-coordinated manner to reduce dynamic power while maintaining performance.

Digital Watermarking ?

Digital watermarking is a process for embedding data (watermark) into a multimedia object for its copyright protection and authentication.

<u>Types</u>

Visible and Invisible
Spatial/DCT/ Wavelet
Robust and Fragile

An Watermarked Image (from IBM)

Another Example

Watermarking: General Framework

- Encoder: Inserts the watermark into the host image
- Decoder: Decodes or extracts the watermark from image
- Comparator: Verifies if extracted watermark matches with the inserted one

Why Hardware Implementation ?

Hardware implementations of watermarking algorithms necessary for various reasons:

- Easy integration with multimedia hardware, such as digital camera, camcorder, etc.
- Low power
- High performance
- Reliable
- Real time applications

Previous Work (Hardware based Watermarking)

Work	Туре	Target Object	Domain	Techn ology	Chip Power
Strycker, 2000	Invisible Robust	Video	Spatial	NA	NA
Tsai and Lu 2001	Invisible Robust	Video	DCT	0.35µ	62.8 mW
Mathai, 2003	Invisible Robust	Image	Wavelet	0.18µ	NA
Garimella, 2003	Invisible Fragile	Image	Spatial	0.13µ	37.6 μW

Previous Work: Summary

- Many software implementations of watermarking algorithms.
- Only few hardware implementations.
- Just one hardware implementation in frequency domain which can insert only invisible watermark.
- All other implementations in spatial domain.

Highlights of our Designed Chip

- DCT domain Implementation
- First to insert both visible and / or invisible watermark
- First Low Power Design for watermarking using dual voltage and dual frequency
- Uses Pipelined / Parallelization for better performance

Watermarking through JPEG Encoder

Watermarking in Digital Camera

Invisible Algorithm Implemented

- 1. Divide the original image into blocks.
- 2. Calculate the DCT coefficients of all the image blocks.
- 3. Generate random numbers to use as watermark.
- 4. Consider the three largest AC-DCT coefficients of an image block for watermark insertion.

Reference: I.J. Cox, et. al., "Secure Spread Spectrum Watermarking for Multimedia", IEEE transactions on Image Processing, 1997.

Visible Algorithm Implemented

- 1. Divide Original and watermark image into blocks.
- 2. Calculate DCT coefficients of all the blocks.
- 3. Find the edge blocks in the original image.
- 4. Find the local and global statistics of original image using DC-DCT and AC-DCT coefficients.
- 5. The mean of DC-DCT coefficients and mean and the variance of AC-DCT coefficients are useful.
- 6. Calculate the Scaling and embedding factors.
- 7. Add the original image DCT coefficients and the watermark DCT coefficients block by block.

Reference: S. P. Mohanty, and et. al., "A DCT Domain Visible Watermarking Technique for Images", *Proc. of the IEEE ICME* 2000.

The Proposed Architecture

The Proposed Architecture (Different Modules)

- **DCT Module**: Calculates the DCT coefficients.
- Edge Detection Module: Determines edge blocks.
- Perceptual Analyzer Module: Determines perceptually significant regions using original image statistics.
- Scaling and Embedding Factor Module: Determines the scaling and embedding factors for visible watermark insertion.
- Watermark Insertion Module: Inserts the watermark
- Random Number Generator Module: Generates random numbers.

The Proposed Architecture (DCT Module)

DCT Module

- •Computes DCT of a 4x4 block
- •Both DCTX and DCTY modules have similar architectures

The Proposed Architecture (DCT Module)

DCT module implements the following equations: x00=((in00*c00) + (in01*c01) + (in02*c02) + (in03*c03)) x10=((in10*c00) + (in11*c01) + (in12*c02) + (in13*c03)) x20=((in20*c00) + (in21*c01) + (in22*c02) + (in23*c03))x30=((in30*c00) + (in31*c01) + (in32*c02) + (in33*c03))

NOTE:

in_{ij} – input, c_{ij} – constants, x_{ij} – coefficients
 16 multiplications and 12 additions involved

The Proposed Architecture (DCT Module)

The Proposed Architecture (Edge Detection Module)

The Proposed Architecture (Perceptual Analyzer Module)

Perceptual Analyzer Module

The Proposed Architecture (Perceptual Analyzer Module)

The Proposed Architecture (Scaling and Embedding Factor Module)

H *TF

The Proposed Architecture (Scaling and Embedding Factor Module)

The Proposed Architecture (Invisible Insertion Module)

Invisible insertion process:

$$c_{I_{W_k}} = c_{I_k} + \alpha \omega_k$$

The Proposed Architecture (Visible Insertion Module)

Visible insertion process:

$$c_{I_{W_k}} = \alpha_k c_{I_k} + \beta_k c_{W_k}$$

The Proposed Architecture: Pipeline and Parallelism

The Proposed Architecture: Dual Voltage and Frequency

Normal Voltage

Normal Clock

Lower

Voltage

DCT X

Slower

Clock

DC'

Dual Voltage: Level Converters

- Level converters required to step up the low voltage to high voltage.
- Traditional level converter: Differential Cascode Voltage Switch (DCVS).
- In this work: Single Supply Level Converters faster, better power consumption, needs single voltage supply only.

Reference: R.Puri et. al., "Pushing ASIC performance in a power envelope" in the Proceedings of the Design Automation Conference, 2003, pp. 788-793

Layout and Schematic of SSLV

Prototype Implementation: Flow

- Algorithm selection and MATLAB/Simulink simulation and verification.
- FPGA based prototyping
- Standard cell implementation
 - Top-down hierarchical approach

Prototype Chip Implementation:

Tools	Purpose		
Cadence NClaunch	VHDL simulator		
Synopsys Design Analyzer	Verilog netlist generation		
Cadence Silicon Ensemble	Layout, Placement and routing		
Cadence Virtuose tool	Layout Editing		
Cadence Abstract Generator	Abstract generation		
Synopsys Nanosim	Power and delay calculations		

Standard Cell Design Style adopted. Standard Cells obtained from Virginia Tech. Technology: TSMC 0.25 UPRSITY OF **I*****TEXAS**[™]

1/15/2007

Design Flow Example: VHDL

```
File Edit Window Tools Syntax
                                                                            Help
entity edm3 is
port (clk, reset, vdd1, enable, vss1 : in std_logic;
      AnMax, An : in std_logic_vector(16 downto 0);
      edge_block, done, write_edm3 : out std_logic;
      countout : out std logic vector(7 downto 0)
      1:
end entity edm3;
architecture behav of edm3 is
component counter8 is
port (clk : in std_logic;
     reset, vdd1, enable : in std_logic;
      q : inout std_logic_vector(7 downto 0)
      ):
end component counter8;
signal An_max, AnMax_by_2 : std_logic_vector(16 downto 0);
signal count_out : std_logic_vector(7 downto 0);
signal At, A, B, Bt, count, edgeblock, en_count, write, proces,
tempedgeblock : std_logic;
begin
COUNTER: counter8 port map (clk=>clk, reset=>reset, enable=>write, vdd1=>vdd1,
q=>count_out);
countout <= count out:
counting: process(count_out) is
          begin
          if (count_out="111111111") then
          count <= 11;
          else
          count<='0':
          end if:
          end process:
                        _____
```


Design Flow Example: Synthesized Verilog Netlist

<u>File Edit Window T</u>ools Syntax

```
nodule edm3 ( clk, reset, vdd1, enable, vss1, AnMax, An, edge_block, done,
    write_edm3, countout );
input [16:0] An;
input [16:0] AnMax;
output [7:0] countout;
input clk, reset, vdd1, enable, vss1;
output edge_block, done, write_edm3;
    wire Bt, n_133, At88, n_134, At, \"<"-return148 , count, Bt100, n195, n196,</pre>
        n197, n198, n199, n200, n201, n202, n203, n204, n205, n206,
        \*cell*78/U5/Z_0 ;
    counter8 COUNTER ( .clk(clk), .reset(reset), .vdd1(vdd1), .enable(
        write_edm3), .q(countout) );
    and3_1 U39 ( .ip1(n195), .ip2(n_133), .ip3(n196), .op(\*cell*78/U5/Z_0 )
         ):
    or2_1 U40 ( .ip1(n197), .ip2(n198), .op(At88) );
    and2_1 U41 ( .ip1(\"<"-return148 ), .ip2(n_133), .op(n_134) );
    inv_1 U42 ( .ip(reset), .op(n_133) );
    nand2_1 U43 ( .ip1(n199), .ip2(n200), .op(Bt100) );
    nor2_1 U44 ( .ip1(n201), .ip2(n199), .op(n197) );
    nor2_1 U45 ( .ip1(n198), .ip2(n201), .op(n202) );
    nor3_1 U46 ( .ip1(n203), .ip2(n204), .ip3(n205), .op(count) );
    nand2_1 U47 ( .ip1(At), .ip2(n_133), .op(n199) );
    mux2_2 U48 ( .ip1(n202), .ip2(n198), .s(n199), .op(write_edm3) );
    mux2_2 U49 ( .ip1(n201), .ip2(enable), .s(n199), .op(n195) );
    and2_1 U50 ( .ip1(countout[1]), .ip2(countout[3]), .op(n206) );
nand3_1 U51 ( .ip1(countout[0]), .ip2(countout[2]), .ip3(n206), .op(n205)
         );
    nand2_1 U52 ( .ip1(countout[5]), .ip2(countout[4]), .op(n203) );
    nand2_1 U53 ( .ip1(countout[7]), .ip2(countout[6]), .op(n204) );
    inv_1 U54 ( .ip(count), .op(n201) );
nand2_1 U55 ( .ip1(Bt), .ip2(n_133), .op(n196) );
    inv_1 U56 ( .ip(n196), .op(n198) );
    nand2_1 U57 ( .ip1(enable), .ip2(n196), .op(n200) );
    drp_2 At_reg ( .ck(clk), .ip(At88), .rb(n_133), .q(At) );
    lp_2 edgeblock_reg ( .ck(\*cell*78/U5/Z_0 ), .ip(n_134), .q(edge_block) );
    dp_2 done_reg ( .ck(clk), .ip(count), .q(done) );
    drp_2 Bt_reg ( .ck(clk), .ip(Bt100), .rb(n_133), .q(Bt) );
    edm3_DW01_cmp2_17_0 \lt_100/lt/lt ( .A(An), .B({vss1, AnMax[16],
        AnMax[15], AnMax[14], AnMax[13], AnMax[12], AnMax[11], AnMax[10],
        AnMax[9], AnMax[8], AnMax[7], AnMax[6], AnMax[5], AnMax[4], AnMax[3],
        AnMax[2], AnMax[1]}), .LEQ(1′b0), .TC(1′b0), .LT_LE(\"<"-return148 )
         ):
endnodu] e
```


Help

Design Flow Example: Placement and Routing

NORT	HTEXA	S™.

Design Flow Example: Layout

Design Flow Example:

Abstract Generation

K: -194635	Y: 214994	Selected: 0	DX: 0	DY: 1071	Mem: 7724	5
e Edit Viev	V					
					Fit	
in press press and						
		ie al refer to to the sector	ie is hit die int i die i	e fallele fisk hetel i k	▶ ▼	
					In In 2X	FS
					Out Out 25	Dre
				ti elle si elle ti elle ci elle elle elle Reference si elle ci elle ci elle elle		
			18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		Pan Redraw	/ Cle
					- Select	
					inst Pn	t+ P
	en den de la compo	ie nee f birthieurn	warte eine eine eine eine	er telen er telen er telen er er te	Vterm Bo	x+ Be
					iTerm Al	I+ A
					net 🗖	ll Tun
	en a me de la terre				bus -	
				en ann a stàite ann ann an ann ann ann ann ann ann ann	🌩 pin 🛄 💆	riaum
					iPin B	y Com
					Summary	Detail
					🔳 backgrour	nd (dri
					- Edit	
					Move snaps	90
					Botate B0	
	a fi sha she ka		letet freeket freiel			
					Properties	Dele
					Command His	tory

UNIVERSITY OF NORTH*TEXAS

Overall Prototype Chip: Layout

Prototype Chip: Floor plan

(AS

Prototype Chip: Statistics

- Technology: TSMC 0.25 μ
- Total Area : 16.2 sq mm
- **Dual Clocks: 280 MHz and 70 MHz**
- Dual Voltages: 2.5V and 1.5V
- No. of Transistors: 1.4 million
- Power (dual voltage and frequency): 0.3 mW
- Chip (single voltage and frequency): 1.9 mW

Conclusion and Future Work

- Dual Voltage, Dual frequency watermarking chip was developed.
- Invisible / Visible insertion
- Pipelined and Parallelized architecture for performance.
- Frequency domain implementation for real time audio and video watermarking.
- Real time watermark extraction.
- Need more robust watermarking algorithms.

About University of North Texas

- Located near Dallas, TX
- Public University: approx. 35K students
- Dept of CSE:
 - Ph.D.
 - M.S.
 - □ B.S.

