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Digital Watermarking ?

Digital watermarking 1s defined as a process of
embedding data (watermark) into a multimedia object to
help to protect the owner's right to that object.

Types of Watermarking

*Visible and Invisible
*Spatial, DCT and Wavelet domain
*Robust and Fragile



Digital Watermarking ?
(Visible Vs Invisible)

« A visible watermark 1s a secondary translucent
overlaid into the primary 1image and appears visible to
a casual viewer on careful inspection.

* The mnvisible-robust watermark 1s embedded in such a
way that modifications made to the pixel value 1s
perceptually not noticed and it can be recovered only
with appropriate decoding mechanism.

* Both visible and invisible watermarking have their
applications and hence are equally important.

NOTE: We are focusing on visible watermarking.



Digital Watermarking : Visible Examples
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(Source: IBM)
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Watermarking : General Framework

» Encoder: Inserts the watermark into the host image

» Decoder: Decodes or extracts the watermark from
image

» Comparator: Verifies i1f extracted watermark
matches with the inserted one

Encoder implementation is necessary for visible
watermarking.



Related Works
(Hardware Systems for Watermarking)

Work Type Target | Domain | Techn | Chip
Object ology | Power
Strycker, | Invisible | Video | Spatial | NA | NA
2000 [4] Robust
Tsai and Lu | Invisible | Video | DCT | 0.35u | 62.8
Mathai, | Invisible | Image | Wavelet | 0.18u | NA
2003 [5] Robust
Garimella, | Invisible | Image | Spatial | 0.13u | 37.6
2003 [7] Fragile pW
Mohanty | Robust | Image | Spatial | 0.35u | 2.05
2003 [8] Fragile mW
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Why Hardware Implementation ?

Hardware implementations of watermarking algorithms
necessary for various reasons:

— Easy integration with multimedia hardware, such
as digital camera, camcorder, etc.

— Low power
— High performance
— Reliable

— Real time applications



Secure JPEG Encoder
(Spatial Domain)
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Secure JPEG Encoder
(DCT domain)
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Secure Digital Still Camera

(Flash, SDRAM)
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Goals of the Visible Watermarking Algorithm

A visible watermark should be obvious 1n both
color and monochrome images.

The watermark should be spread in a large or
important area of the image.

I'he visible watermark should 1dentify the ownership.

I'he visual quality of the host image should be
preserved.

The watermark should be difficult to remove from the
host 1mage.

NOTE: The above conflicting requirements make
watermarking a challenging problem.
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Notations used in Algorithm Description

: Original (or host) grayscale image

- Watermark image (a grayscale image)

- A pixel location

- Watermarked image

: Original image dimension

- Watermark image dimension

- k'™ block of the original image T

. k'™ block of the watermark image W

. k'™ block of the watermarked image I
: Scaling factor for k" block

- Embedding factor for k*" block

- Mean gray value of the original image T
- Mean gray value of image block iy

- Variance of the original image block 7

» The maximum wvalue of a

» The mimimum value of oy,

- The maximum value of 3

: The minimum value of 3

- Gray value corresponding to white pixel
- A global scaling factor

- Linear regression co-efficients

- Linear regression co-efficients
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Visible Watermarking Algorithm 1 [9]

* The original algorithm proposed in [9]
[ I(m.n) + W(m.n) (Gt ) (M)éa; for 21 > 0.008856

T hite

| I(m.n) + W(m,n) (KR) o for 2™ < (.008856

=256, simplified to:

I(m,n)+ (ﬁ_gﬁ) W(m,n) (I(m,n)):
I(m,n) + (5545) W(m,n) I(m,n) for I(m,n) < 2.2583

Tw(m,n) = <

o Assuming [ ;..

e

for I(m,n) > 2.2583
Iw(m,ﬂ) —

« Fitting piecewise linear model and regression co-

efficient: I(m,n) + (5%5) W(m,n) I(m,n)  for I{m,n) <2
I(m,n) + (&) W(m,n) I(m,n) for2 < I(m,n) <64
Iy (m,n) = q I(m,n)+ (gf’[{,gffﬁ) W(m,n) I(m,n)  for64 < I(m,n) < 128
I(m,n) + (b—ugf—?ﬂg) W(m,n) I(m,n) for 128 < I(m,n) < 192
| I(m,n) + (;*55;5) W(m,n) I(m,n) for 192 < I(m,n) < 256
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Visible Watermarking Algorithm 2 [3]

« Watermark 1nsertion 1s carried out block-by-block
using:  yp = gtk + Ok Wi k= 1,2..
* The scaling and embedding factors are found out as,

g = 1‘-'-'?11--':: L= By I:_[.FEIA: — ﬁfjgj

ﬁf.: — -['fj‘k {1 — EIP{_{IEI;; _IEI]E}}
* Values are scaled to proper range :

0k = Omin + (Omag — Cmin) H_; ELp (_[mk - ﬁf!)z)

B = Bmin + (Bmaz ~ Bmin) 01k (1 - eap (~(jiry = i)*))
 Tyler series 1s used to approximate the exponential.
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Visible Watermarking Algorithm 2 [3] ...

* For edge blocks the scaling and embedding factor is

assumed to be o, and P ; respectively to preserve
the edges of the image.

* First order derivates are used to detect an edge.

 When the mean amplitude of an block exceeds a user

defined threshold, then the block 1s declared as an edge-
block.



Architecture for Algorithm 1
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Architecture for Algorithm 2
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Architecture for Algorithm 2
(o, and 3, calculation unit)
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Architecture for Algorithm 2
(Edge detection unit)
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Combined Overall Datapath Architecture
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The Controller for the merged Datapath
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Prototype Chip Implementation

The implementation of the chip was carried out 1n the
physical domain using the Cadence Virtuoso layout
tool using bottom-to-top design approach.

We designed our own standard cell library containing
basic gates, such as AND, OR, NOT using 0.35u
technology.

The fundamental functional units are 8-bit adders, §-
bit multipliers and 8-bit adder/subtractor.

Adder 1s a ripple-carry manner and the multiplier 1s a
8-bit parallel array multiplier.

The divider 1s 1mplemented using the shift and
subtract logic for the division.



Datapath Layout
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Controller Layout
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Overall Chip Layout
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Chip Floorplan
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Power and Area of different Units (0.35 )

Delay (ns)

Modules Gate Count ~ Power (mWV)
Exponential umt 2370 1.2314

Edge detection unit 3599 1.4137

ay and [ calculation umt 16279 3.444
Controller 163 0.0034
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Overall Statistics of the Chip

Area 3.34 x 2.89mm”
Number of gates 28469
Clock frequency 292.2TM H z

Number of I/O pmns 72

Power

6.9286m WV
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Visible Watermarked Test Images

°0

(a) Lena (b) Burd (c) Nuts and Bolts {d) Watermark

Original Images and Watermark

NOTE: Similar
watermarked
images are
obtained  using
algorithm2. The
difference lies in
the SNR.

(a) Lena (b) Bird {c) Nuts and Bolts

Watermarked Images using Algorithm 1
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Conclusions

It 1s observed that the results of hardware based
watermarking schemes are comparable to that of
software.

I The first algorithm does pixel-by-pixel processing,
whereas the second on does block-by-block processing.
If the first algorithm can be converted to a block-by-
block one, then chip operating at higher frequency can
be developed.

1 Each of the functional units, such as adders, multipliers,
etc., can be optimized.

A low power implementation of the chip can be done.

I Pipelined and parallel implementations also possible.



Thank you
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