VLSI Implementation of Visible
Watermarking for a
Secure Digital Still Camera Design

S. P. Mohanty, N. Ranganathan and R. K. Namballa
Dept. of Computer Science and Engineering
University of South Florida

smohanty, ranganat, rnamball(@csee.usf.edu

University of South Florida 1

Outline of the Talk

Introduction

Related Works

Watermarking Algorithms
Proposed Architecture
Prototype Chip Implementation

Conclusions

Digital Watermarking ?

Digital watermarking 1s defined as a process of
embedding data (watermark) into a multimedia object to
help to protect the owner's right to that object.

Types of Watermarking

*Visible and Invisible
*Spatial, DCT and Wavelet domain
*Robust and Fragile

Digital Watermarking ?
(Visible Vs Invisible)

« A visible watermark 1s a secondary translucent
overlaid into the primary 1image and appears visible to
a casual viewer on careful inspection.

* The mnvisible-robust watermark 1s embedded in such a
way that modifications made to the pixel value 1s
perceptually not noticed and it can be recovered only
with appropriate decoding mechanism.

* Both visible and invisible watermarking have their
applications and hence are equally important.

NOTE: We are focusing on visible watermarking.

Digital Watermarking : Visible Examples

|

=T

-

= =

TH e, “THREE
-

TR L]

A T

O T

I R

™

™

=

us

(Source: IBM)

University of South Florida 5

Watermarking : General Framework

» Encoder: Inserts the watermark into the host image

» Decoder: Decodes or extracts the watermark from
image

» Comparator: Verifies i1f extracted watermark
matches with the inserted one

Encoder implementation is necessary for visible
watermarking.

Related Works
(Hardware Systems for Watermarking)

Work Type Target | Domain | Techn | Chip
Object ology | Power
Strycker, | Invisible | Video | Spatial | NA | NA
2000 [4] Robust
Tsai and Lu | Invisible | Video | DCT | 0.35u | 62.8
Mathai, | Invisible | Image | Wavelet | 0.18u | NA
2003 [5] Robust
Garimella, | Invisible | Image | Spatial | 0.13u | 37.6
2003 [7] Fragile pW
Mohanty | Robust | Image | Spatial | 0.35u | 2.05
2003 [8] Fragile mW

University of South Florida

7

Why Hardware Implementation ?

Hardware implementations of watermarking algorithms
necessary for various reasons:

— Easy integration with multimedia hardware, such
as digital camera, camcorder, etc.

— Low power
— High performance
— Reliable

— Real time applications

Secure JPEG Encoder
(Spatial Domain)

——

Encoder Model

Watermark

|
1
1
|
1
1 1
Insertion \ DCT :> Quantizer I>: \::{Cmnpresserﬂ
F
Module ' Bncoder Image
1
1
|

Input
Image

"'iu?"

Quantization

Watermark
Table

Secure JPEG Encoder
(DCT domain)

——

' __Encoder Model L i

’ o :

: : Watermark | | Entropy |

‘ o i> ‘ > Insertion > Quantizer :'_l_'>,' Compresse
DCT P
e Module . Encoder Image

|
1
|

Watermark Quantization
Table

Secure Digital Still Camera

(Flash, SDRAM)

laput | Tyage AD DSP
— S—- E—.
Sensors Converter Processor
i A I
Memory

Watermarking Processor

Watermarking

Controller

|

Watermarking
Datapath

Controller

and

Interface

Output

|

Goals of the Visible Watermarking Algorithm

A visible watermark should be obvious 1n both
color and monochrome images.

The watermark should be spread in a large or
important area of the image.

I'he visible watermark should 1dentify the ownership.

I'he visual quality of the host image should be
preserved.

The watermark should be difficult to remove from the
host 1mage.

NOTE: The above conflicting requirements make
watermarking a challenging problem.

I

w
(m, n)
Iﬂf

JNTI > _f\-rj
ﬁrﬂf > ﬁ'rﬂf

Lk

Wi
W n
(8 3

B

fLT
HE 1
7
&I?ﬂ,ﬂ.m

CYrin

Bmaz
ﬁ?nin
I‘u-‘ hite
xy
Ch1,Cs2
Cs,C4

Notations used in Algorithm Description

: Original (or host) grayscale image

- Watermark image (a grayscale image)

- A pixel location

- Watermarked image

: Original image dimension

- Watermark image dimension

- k'™ block of the original image T

. k'™ block of the watermark image W

. k'™ block of the watermarked image I
: Scaling factor for k" block

- Embedding factor for k*" block

- Mean gray value of the original image T
- Mean gray value of image block iy

- Variance of the original image block 7

» The maximum wvalue of a

» The mimimum value of oy,

- The maximum value of 3

: The minimum value of 3

- Gray value corresponding to white pixel
- A global scaling factor

- Linear regression co-efficients

- Linear regression co-efficients

University of South Florida

13

Visible Watermarking Algorithm 1 [9]

* The original algorithm proposed in [9]
[I(m.n) + W(m.n) (Gt) (M)éa; for 21 > 0.008856

T hite

| I(m.n) + W(m,n) (KR) o for 2™ < (.008856

=256, simplified to:

I(m,n)+ (ﬁ_gﬁ) W(m,n) (I(m,n)):
I(m,n) + (5545) W(m,n) I(m,n) for I(m,n) < 2.2583

Tw(m,n) = <

o Assuming [;..

e

for I(m,n) > 2.2583
Iw(m,ﬂ) —

« Fitting piecewise linear model and regression co-

efficient: I(m,n) + (5%5) W(m,n) I(m,n) for I{m,n) <2
I(m,n) + (&) W(m,n) I(m,n) for2 < I(m,n) <64
Iy (m,n) = q I(m,n)+ (gf’[{,gffﬁ) W(m,n) I(m,n) for64 < I(m,n) < 128
I(m,n) + (b—ugf—?ﬂg) W(m,n) I(m,n) for 128 < I(m,n) < 192
| I(m,n) + (;*55;5) W(m,n) I(m,n) for 192 < I(m,n) < 256

University of South Florida 14

Visible Watermarking Algorithm 2 [3]

« Watermark 1nsertion 1s carried out block-by-block
using: yp = gtk + Ok Wi k= 1,2..
* The scaling and embedding factors are found out as,

g = 1‘-'-'?11--':: L= By I:_[.FEIA: — ﬁfjgj

ﬁf.: — -['fj‘k {1 — EIP{_{IEI;; _IEI]E}}
* Values are scaled to proper range :

0k = Omin + (Omag — Cmin) H_; ELp (_[mk - ﬁf!)z)

B = Bmin + (Bmaz ~ Bmin) 01k (1 - eap (~(jiry = i)*))
 Tyler series 1s used to approximate the exponential.

University of South Florida L5

Visible Watermarking Algorithm 2 [3] ...

* For edge blocks the scaling and embedding factor is

assumed to be o, and P ; respectively to preserve
the edges of the image.

* First order derivates are used to detect an edge.

 When the mean amplitude of an block exceeds a user

defined threshold, then the block 1s declared as an edge-
block.

Architecture for Algorithm 1

Ifm.n) Wim,n)
|
¢ Constants
Comparator
l & are stored
' l y n the
Register L e .
File —= Multiplier Multiplier I'CngteI' file.
j F a; 1s taken
as USer
Multiplier iIlpU.t.
Adder

I (m,n)
W

Architecture for Algorithm 2

I, n)

|

Wim,n)

‘lk and P ;. Calculation Unit

L
max

l

Edge Detection
Unit

oL

B nin B

|
0 1

NS

¥

Y

Multiplier

Multiplier

R

Adder

l

I (mmn)
W

The “o, and 3
calculation unit

determines the
scaling and
embedding

factors.

The “edge
detection unit”
determines the

edge and non-edge
blocks.

Architecture for Algorithm 2
(o, and 3, calculation unit)

Tim.n)
l 128
L ; r
Addear Adder ! Subtractor
Accumulator Adder
1
! 16384
Multrphar Accummulater
: 0.5
I"'.'.'j.- 4 =
Adder / Subtractor * gls2
MMultipher
(. —0.57 -
r I'\. I-I' 'fjr G
Exponemntizl Tt Er
(. |
Adder / Subtractor DChyadar
r l
Multipliar| B — B o (T oar — Lo
| ;
Multiplier o | Multiplier
. min
1 l l ¥
Adder Adder

[

b

The Dblock size 1s

assumed to be 8 x &.

IWhite

The deviation of the
mean block gray value
1s calculated form mid

1S assumed as 256.

intensity I.../2 to
accelerate the hardware
performance.

Architecture for Algorithm 2
(Edge detection unit)

Iim~1n) .i'rT,n,l Iimntl)

l l The absolute values of

Adder / Subtractor Adder / Subtractor . . .
horizontal and vertical gradients
1 are calculated using the
Adder
. adder/subtractor.
= G(m,n) is the amplitude of an
f
Accumnlator edg C.
|
- * Accumulator-adder unit
Multzpher . .
&1 i calculates the amplitude for a
Comparator block.

Edze or Non—adge Block

Combined Overall Datapath Architecture

Salect Tor_md e, md

ﬁ.’r and B & Calculation Unit

(-}

AT ﬂ'j_. B FEEFEH |3 i

_ | Edge Detaction a _1/ LY _1/
Tlmat |

—F L b Multiplexers are
- kI_/ used to stitch the
P 1 two datapaths.
I [
3 _ _1'r \
'iu;l..l.]_:lllm'
P

The Controller for the merged Datapath

Start=0

Start=1 @
. Start=1
Select=0 Select=1
Read Read BlockCompleted=[
Pixel Block

BlockCompleted=1
R BlockCompleted=1

ImageCompleted=1 ImageCompleted=0

ImageCompleted=0

BlockCompleted=0

BlockCompleted=1
ImageCompleted=1

Image
ImageCompleted=0

ImageCompleted=1

Prototype Chip Implementation

The implementation of the chip was carried out 1n the
physical domain using the Cadence Virtuoso layout
tool using bottom-to-top design approach.

We designed our own standard cell library containing
basic gates, such as AND, OR, NOT using 0.35u
technology.

The fundamental functional units are 8-bit adders, §-
bit multipliers and 8-bit adder/subtractor.

Adder 1s a ripple-carry manner and the multiplier 1s a
8-bit parallel array multiplier.

The divider 1s 1mplemented using the shift and
subtract logic for the division.

Datapath Layout

University of South Florida

24

Controller Layout

University of South Florida

25

Overall Chip Layout

University of South Florida

26

Chip Floorplan

mk and Bk Calculation Unait

Edge—Detection
Unit

Controller

Other Components

ImageDataln -
| G—

WatermarkDataln

Second / First

G min

'Imm'

3
[3

min

Max

L
. I
tart

Eeset
Clock

Chip Pin Diagram

_—

—-.

—-.

—h

—h.

Spatial Domain

Visible

Watermarking

Chip

— DataOut

— Busy

—= DataReady

Power and Area of different Units (0.35)

Delay (ns)

Modules Gate Count ~ Power (mWV)
Exponential umt 2370 1.2314

Edge detection unit 3599 1.4137

ay and [calculation umt 16279 3.444
Controller 163 0.0034

University of South Florida

0.8981
1.0967
2.0241
0.3201

29

Overall Statistics of the Chip

Area 3.34 x 2.89mm”
Number of gates 28469
Clock frequency 292.2TM H z

Number of I/O pmns 72

Power

6.9286m WV

University of South Florida

30

Visible Watermarked Test Images

°0

(a) Lena (b) Burd (c) Nuts and Bolts {d) Watermark

Original Images and Watermark

NOTE: Similar
watermarked
images are
obtained using
algorithm2. The
difference lies in
the SNR.

(a) Lena (b) Bird {c) Nuts and Bolts

Watermarked Images using Algorithm 1
University of South Florida 31

Conclusions

It 1s observed that the results of hardware based
watermarking schemes are comparable to that of
software.

I The first algorithm does pixel-by-pixel processing,
whereas the second on does block-by-block processing.
If the first algorithm can be converted to a block-by-
block one, then chip operating at higher frequency can
be developed.

1 Each of the functional units, such as adders, multipliers,
etc., can be optimized.

A low power implementation of the chip can be done.

I Pipelined and parallel implementations also possible.

Thank you

University of South Florida

33

