A Framework for Energy and Transient Power Reduction during Behavioral Synthesis

Saraju P. Mohanty and N. Ranganathan

Dept. of CSE, University of South Florida, Tampa, FL 33620, USA <u>smohanty, ranganat@csee.usf.edu</u>

Outline of the Talk

- Different power parameters
- Related work
- Cycle power profile function
- Heuristic to minimize CPF
- Experimental results
- Conclusions

Different Power and Energy Parameters

- •Peak power
- •Cycle difference power
- •Peak power differential
- •Average Power
- •Total Energy

Peak Power

The peak power is the maximum power consumption of the IC at any instance during its execution.

For a DFG, let P_c denote power consumption in any control step c, then we define peak (cycle) power as :

 $P_{peak} = maximum(P_c)$, over all control steps

Average Power and Total Energy

Average power (P) = Average of (cycle power consumption i.e. P_c) over all control steps

Total energy = Energy consumption for the DFG for all operations and control steps

Cycle Difference Power and Peak Power Differential

Let, $DP_c = absolute (P - P_c)$ denote the **cycle difference power**. This characterizes the power fluctuation for each cycle of DFG.

Peak power differential is defined as : $DP_{peak} = maximum (DP_{c})$

Transient Power ?

Both the peak power and peak power differential drive the transient characteristic of a CMOS circuit.

Related Work

(Peak power reduction at behavioral level)

- Martin & Knight [7], 1996 simultaneous assignment and scheduling
- Raghunathan and et al. [13], 2001 also address peak power differential
- Shiue [15], 2000 ILP formulation to reduce peak power under latency constraints
- And many other works

Related Work: Martin and Knight [7]

•Peak power reduction is achieved through simultaneous assignment and scheduling

• Use minimization at one level of abstraction to achieve optimization at other level (specifically, simultaneous use of SPICE and behavioral synthesis tool)

- Genetic algorithm has been used for optimization
- •Peak power reduction : 40-60%,
- Average power penalty : 0.3-2.7%

Related Work : Raghunathan [13]

- •Simultaneous minimization of peak power and peak power differential
- Use data-monitor operations
- •Peak power reduction : 17-32%
- •Peak power differential reduction : 25-58%
- •Judicious use of transient power metric needed for minimization of area and performance overhead

Related Work : Shiue [15]

- •ILP based scheduling and modified force-directed scheduling
- •Peak power minimization under latency constraints
- •Single supply voltage, multicycling and pipelining
- •Peak power reduction : 0-75 %

We Aim At :

- **Simultaneous reduction of :**
- •Peak power
- •Cycle difference power
- •Peak power differential
- •Average power
- •Total energy

Our Approach

Define a new parameter (CPF) that captures all power parameters

Minimize the new parameter in using multiple supply voltage and dynamic frequency

Normalized Average Power (P_{norm})

Normalized average power (P_{norm})

= Average of cycle power consumption over all control steps / maximum power consumption in any control step

= Average (P_c) / maximum(P_c)

 $= P / P_{peak}$

Normalized Average Cycle Difference Power (DP_{norm})

Normalized average cycle difference power (DP_{norm})

= average cycle difference power over all control steps / maximum cycle difference power for any control step

- = Average $(DP_c) / Maximum (DP_c)$
- = DP / DP_{peak}

Normalized cycle power profile function (CPF)

Normalized cycle power profile function is defined as :

 $CPF_{norm} = PF * P_{norm} + (1-PF) * DP_{norm}$

Where, $PF = power profile factor used to make CPF_{norm}$ either cycle power dominating (average and peak) or difference power dominating (cycle difference and peak differential)

 P_{norm} = normalized average power

DP_{norm} = normalized average cycle difference power

Normalized CPF

Is a function of five different parameters :

- Average power power (P)
- Peak power (P_{peak})
- Average cycle difference power (DP)
- Peak differential power (DP_{peak})
- Power profile factor (PF)

Each Power is Determined by :

- $\alpha_{i,c}$ = switching activity of resource i active in control step c
- C_{i,c} = load capacitance of resource i active in control step c
- V_{i,c} = operating voltage of resource i active in control step c
- $f_c =$ frequency of control step c

CPF Minimization

Minimization of the normalized cycle power profile function using multiple supply voltages and dynamic clocking frequency can minimize all the powers and energy parameters.

CPF-Scheduler

Input: Unscheduled data flow graph, resource constraint, number of allowable voltage levels, number of allowable frequencies, load capacitance of each resource, delay of each functional unit at different voltage levels, operating frequencies and voltages

Output: Scheduled data flow graph, base frequency, cycle frequency index, operating voltage for each operation

CPF-Scheduling Algorithm Flow

- **Step 1** : Get the ASAP and ALAP schedule
- **Step 2** : Modify the ASAP and ALAP schedules using the number of resources without operating voltage constraint
- Step 3 : Total No. of control steps = Maximum (ASAP steps, ALAP steps)
- **Step 4** : Find the vertices having zero and non-zero mobility
- **Step 5** : Use the CPF-Scheduler-Heuristic to assign time stamp, voltage level and cycle frequency such that CPF_{norm} is minimum
- **Step 6** : Find cycle frequency index for each cycle

CPF-Scheduler Heuristic

(01) initialize CurrentSchedule as ASAPSchedule ;

(02) while(all mobile vertices are not time stamped) do

(03) for the CurrentSchedule

- (04) if (v_i is a multiplication) then find the lowest available voltage for multipliers;
- (05) if $(v_i \text{ is add/sub})$ then find the highest available operating voltage for ALUs;
- (06) find CurrentCPF_{norm} for CurrentSchedule; Maximum = $-\infty$;

(07) for each mobile vertex v_i

- (08) $c_1 = CurrentSchedule[v_i]; c_2 = ALAPSchedule[v_i];$
- (09) for $c = c_1$ to c_2 in steps of 1

(10) find a TempSchedule by adjusting CurrentSchedule in which v_i is scheduled in c;

- (11) find next higher operating voltage for multiplication vertex (next lower for ALU operation) for the TempSchedule ;
- (12) find TempCPF_{norm} for TempSchedule ; DiffCPF = CurrentCPF_{norm}-TempCPF_{norm}
- (13) if (DiffCPF > Maximum) then Maximum = DiffCPF ; CurrentVertex = v_i ; CurrentCycle = c ; CurrentVoltage = Operating voltage of v_i
- (14) adjust CurrentSchedule to accommodate v_i in c operating at voltage assigned above ;

CPF-Scheduler Heuristic : Explanations

- The heuristic is used to find proper time stamp, operating voltage for mobile vertices such that the CPF_{norm} is minimum for whole DFG.
- Initially assumes the modified ASAP schedule (with relaxed voltage resource constrained) as the current schedule.
- The Current CPF_{norm} value for the current schedule is calculated.
- The heuristic finds CPF_{norm} values (Temp CPF_{norm}) for each allowable control step of each mobile vertices and for each available operating voltages.
- The heuristic fixes the time step, operating voltage and hence cycle frequency for which CPF_{norm} is minimum.

Experimental Results : Resource Constraints Used

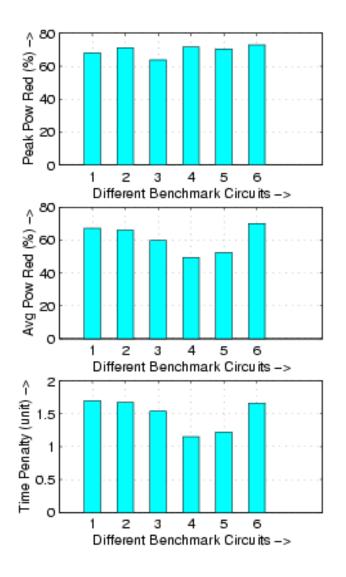
Multipliers		ALUs		Serial
3.3V	5.0V	3.3V	5.0V	No
1	0	0	1	1
2	0	0	1	2
2	0	0	2	3
2	0	1	1	4
1	1	1	1	5

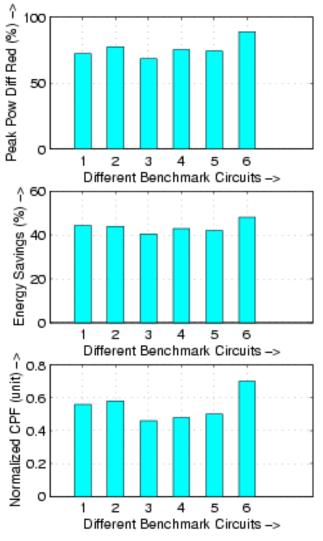
Notations Used to Describe the Results

- $\Delta P_p = (P_{pS} P_{pD})/P_{pS} = peak power reduction$
- $\Delta DP = ((P_{pS}-P_{mS}) (P_{pD}-P_{pD})) / (P_{pS}-P_{mS}) =$ peak differential reduction
- $\Delta P = (P_S P_D)/P_S = average power reduction$
- $\Delta E = (E_S E_D)/E_S = reduction in total energy$

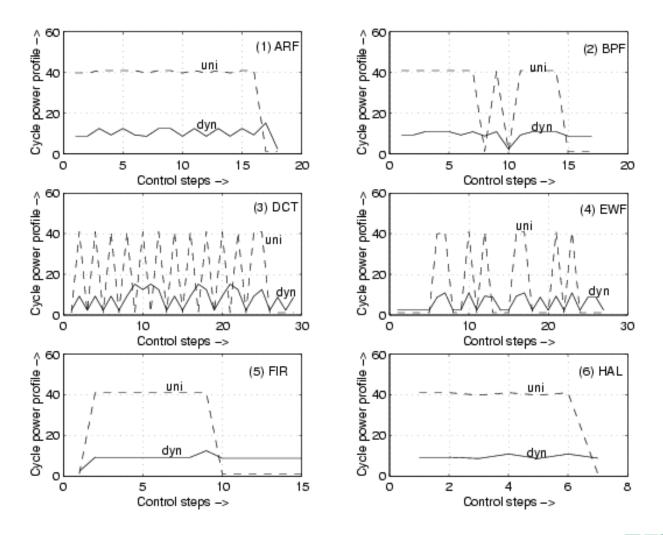
Where,

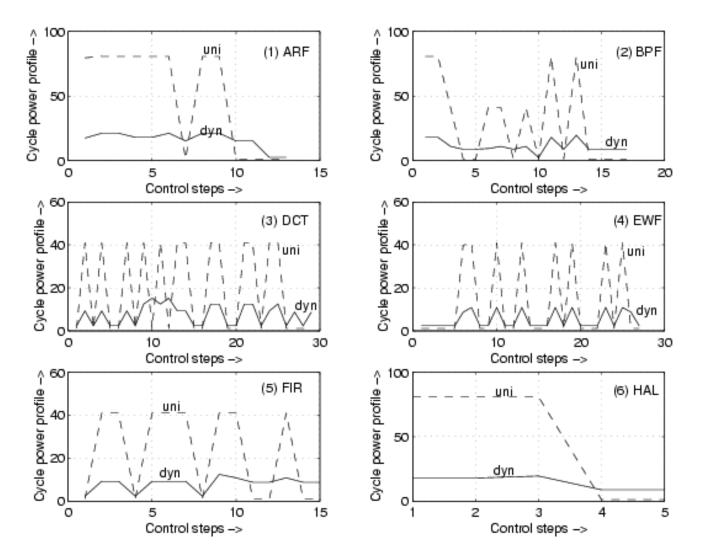
subscript S : single voltage and single freq operation
subscript D : multiple voltage and dynamic freq
Subscript m : minimum power



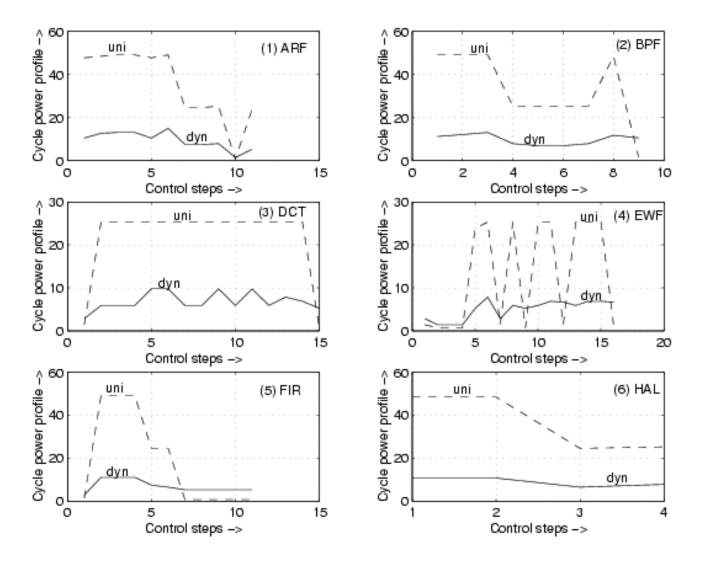

Percentage Reductions for Different Benchmarks

	RCs	ΔP_{p}	ΔDP	ΔP	ΔΕ
ARF	1	63	68	71	47
(1)	3	70	72	69	47
BPF	1	73	79	66	46
(2)	3	73	87	71	46
DCT	1	63	68	50	41
(3)	3	61	72	67	41
EWF	1	73	79	41	44
(4)	3	69	72	55	44
FIR	1	70	75	58	46
(5)	3	77	84	54	46
HAL	1	73	94	73	51
(6)	3	76	97	70	51

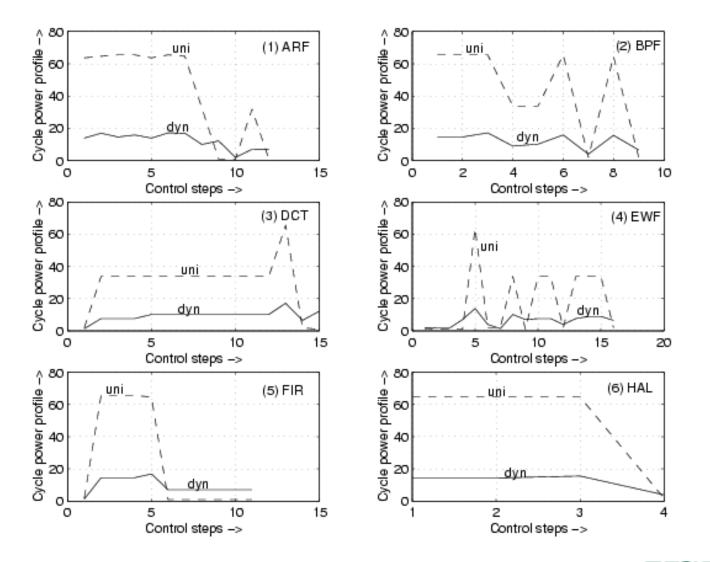

Average Reductions for Benchmarks



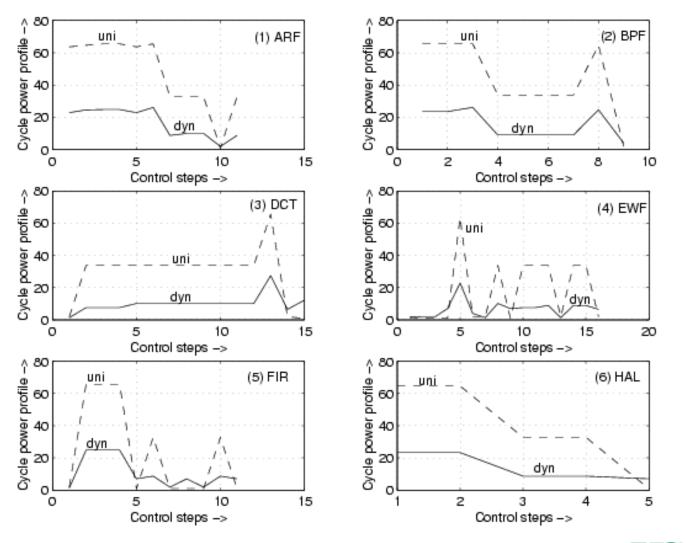
Power Profiles for Benchmarks ($\alpha = 0.5$, PF = 0.5, RC1)



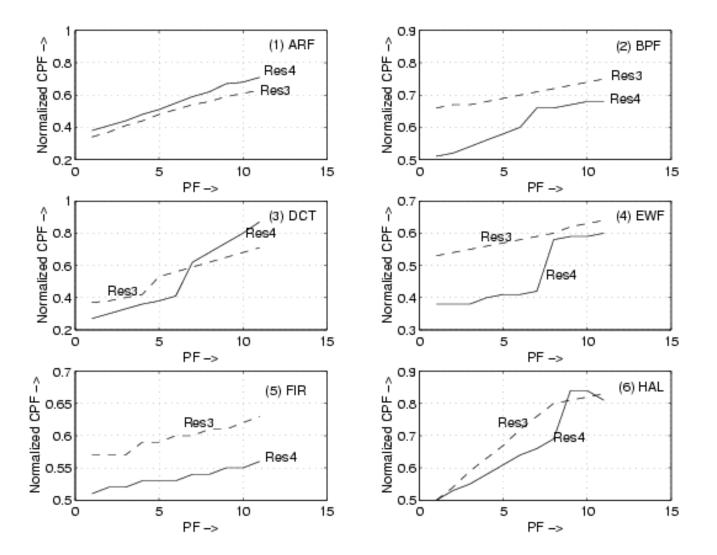
Power Profiles (\alpha = 0.5, PF = 0.4, RC2)



Power Profiles (\alpha = 0.3, PF = 0.8, RC3)



Power Profiles (\alpha = 0.4, PF = 0.2, RC4)



Power Profiles (\alpha = 0.4, PF = 0.7, RC5)

CPF Vs PF plot ($\alpha = 0.5$, **RC3** and **RC4**)

Reductions Using Different Algorithms (Only peak power reduction avg data given)

	CPF	Shiue[15]	Martin[7]	Raghunathan [13]
ARF	68	50	_	-
BPF	71	-	-	-
DCT	64	50	71	28
EWF	72	0	-	-
FIR	71	63	45	23
HAL	73	28	-	-

Conclusions

- •This work is a unified framework for simultaneous power and energy reduction
- •The CPF parameter defined and used in this work facilitates such simultaneous reduction
- CPF-Scheduler algorithm developed that takes resources constraints, minimizes CPF
- •The average time penalty is estimated to be 40%
- •Future works needs to be done using better optimization technique

Thank you

