Biosensors

Saraju P. Mohanty smohanty@csee.usf.edu

Dept. of CSE, USF, Tampa, FL

For more details, visit :

http://www.csee.usf.edu/~smohanty/research/

Welcome to the world of

Biosensors

Outline of the presentation

- 1. Introduction to biosensors
- 2. Working principle of biosensors
- 3. Different types of biosensors
- 4. A biosensor to monitor cell morphology
- 5. Lab-on-a-chip systems (DNA detection)
- 6. Glucose biosensors
- 7. Conclusions

What is a **Biosensor** ??

A biosensor is a analytical device incorporating a deliberate and intimate combination of a specific biological element (that creates a recognition event) and a physical element (that transduces the recognition event).

Biosensor??

Basic Concepts of Biosensor

Applications of Biosensors

Biosensor : Products

A needle-type glucose biosensor implanted tissue

Products(Pen)

Medisense glucose biosensor Pen

Products(Big Display)

Medisense glucose biosensor : Big digital display

Products(Biodetector)

A handheld biodetector

Elements of Biosensor

Different types of Biosensor

Resonant biosensors
Optical-Detection biosensors
Thermal-Detection biosensors

► Ion-Sensitive FETs (ISFETs) biosensors

Electrochemical biosensors

Biosensor types

*Conductimetric

*Amperometric

Potentiometric

Characteristics	Conductimetric	Amperometric	Potentiometric
Measured	Conductance/	Current	Potential/
Parameter	Resistance		Voltage
Applied	Sinusoidal	Constant	Ramp
Voltage	(AC)	Potential (DC)	Voltage
Sensitivity	Low	High	
Governing	Incremental	Cottrell	Nesrt
Equation	Resistance	Eqn.	Eqn.
Fabrication	FET+Enzyme	FET+Enzyme 2 elctrodes	FET+Enzyme oxide electrode

Bio+sensor coupling : 4 types

Biosensor : Enzymes

Working Principle of Enzymes

Biosensor : Specificity

This specificity action is the basis of biosensors

A Biosensor to monitor cell morphology

To monitor cell morphology

A cell in tissue culture medium

To monitor cell morphology

ECIS schematic diagram

To monitor cell morphology

ECIS : resistance and capacitance measurement

Biosensor for cell morphology.....

The advantages :

•The biosensor is less time consuming compared to the conventional methods.

•It is possible to automate and quantify cell morphology measurement.

•The fluctuating pattern can be used as signature for a cell.

Biosensor for cell morphology.....

The disadvantages :

The accuracy of the biosensor is doubtful, it may happen two cells can have almost similar pattern.

□If the average impedance is to be taken as a measure then it is possible that two entirely different patterns can have same average value.

□ It is not clear if the biosensor is useful for nonmammalian cells and plant cells.

A microfluidic biodetector

Saraju Mohanty

A microfluidic

Magnified view of chamber unit

A microfluidic

Detection steps :

OSome milliliters of sample solution are pumped into the chamber.

OThe sample is concentrated to a volume of a microliter.

OSample DNA are now extracted from sample solution.

OPCR is performed.

OFlouroscence probe DNAs bind the sample DNA.

OWhen the LEDs cause the probe DNAs to fluorescent the glow is captured by photodiodes.

A magnetic biodetector

A disposable glucose biosensor

4 ~ (1) N

2~

Cellulose acetate membrane

Immobilized enzyme membrane

Mediator modified membrane

Isolating layer

Graphite layer

Metalic substrate

A disposable

Assembled layers : the biosensor

A disposable

Biosensor : Difficulties

Contamination

Immobilisation of biomolecules

Sterilization

Uniformity of biomolecule preparation

Selectivity and detection range

Conclusions

- 1. Introduction to biosensors
- 2. Working principle of biosensors
- 3. Different types of biosensors
- 4. A biosensor to monitor cell morphology
- 5. Lab-on-a-chip systems (DNA detection)
- 6. Glucose biosensors

THANK YOU

