A Visible Watermarking Chip for A Secure Digital Still Camera (S²DC)

Saraju P. Mohanty

Dept. of Computer Sc. & Engg. University of South Florida Tampa, FL 33620, USA smohanty@csee.usf.edu

Outline of the Talk

- What is digital watermarking ?
- Why watermarking ?
- Some similar terms
- Types of watermaking
- General framework for watermarking
- Watermarking : Attacks
- Visible watermarking : My work
- Watermarking chip : Proposal
- Conclusions

Digital Watermarking ?

Digital watermarking is defined as a process of embedding data (watermark) into a multimedia object to help to protect the owner's right to that object. The embedded data (watermark) may be either *visible* or *invisible*.

Some Examples Watermarked Images

Some Examples

Some Examples

Cryptography Vs Steganography

Cryptography : Secret writing

Steganography : Cover writing

Steganography Vs Watermarking

Steganography : Bandwidth

Watermarking : Robustness

IP Protection Vs Copyright Protection

Intellectual property : protection of processor core

Copyright : protection of data

Types of Watermarking Techniques

Watermarking : General Framework

Encoder
Decoder
Comparator

General Framework : Encoder

General Framework : Decoder

General Framework : Comparator

Attacks on Watermark

What is Visible Watermarking ?

In visible watermarking of images, a secondary image (the watermark) is embedded in a primary (host) image such that watermark is intentionally perceptible to a human observer.

Visible Watermarks: Desired Characteristics

- A visible watermark should be obvious in both color and monochrome images.
- The watermark should be spread in a large or important area of the image in order to prevent its deletion by clipping.
- The watermark should be visible yet must not significantly obscure the image details beneath it.
- The watermark must be difficult to remove; removing a watermark should be more costly and labor intensive than purchasing the image from the owner.

Visible Watermarking : My work

- Let $c_{ij}(n)$ are the DCT coefficients of the host image block and $w_{ij}(n)$ the DCT coefficients of the watermark image block.
- The DCT coefficients of the Watermarked image are then obtained as follows :

 $\dot{c}_{ij}(n) = \alpha_n c_{ij}(n) + \beta_n w_{ij}(n)$ n = 1, 2...

• The α_n and β_n are scaling and embedding factors for block n respectively.

Factors considered to maintain Image Quality

- The edge blocks should be least altered to avoid significant distortion of the image.
- The distortion visibility is low when the background has strong texture.
- The blocks with mid-intensity values $(\mu_n \approx \mu)$ are more sensitive to noise than that of low intensity blocks $(\mu_n < \mu)$ as well as high intensity blocks $(\mu_n > \mu)$.

Finding Scaling and Embedding Factors

- The α_n and β_n for edge blocks are taken to be α_{max} and β_{min} respectively.
- For non-edge blocks α_n and β_n are computed as:

$$\begin{aligned} \alpha_{n} &= \sigma_{n}^{'} \exp((-(\mu_{n}^{'} - \mu^{'})^{2}) \\ \beta_{n} &= (1/\sigma_{n}^{'}) (1 - \exp((-(\mu_{n}^{'} - \mu^{'})^{2})) \end{aligned}$$

where, μ'_n , μ' are the normalized values of μ_n and μ respectively, and σ'_n is normalized logarithm of σ_n (the variance of the AC DCT coefficients).

• α_n and β_n are then scaled to the ranges (α_{min} , α_{max}) and (β_{min} , β_{max}) respectively, where α_{min} and α_{max} are the minimum and maximum values of the scaling factor, and β_{min} and β_{max} are the minimum and maximum values of the embedding factor.

Insertion of Visible Watermark

Host and Watermark Images

Host Image

Watermark Image

Watermarked Images

Watermark over the whole image

Small Watermark at a corner

Source of Digital Pictures (Images)

Digital camera
Scanner / Digitizer
Web cam
Camcorder

Use of Visible Watermark

Still image
VCD
DVD
Digital TV broadcasting
Digital Library

Digital Camera

Media Processor : conceptual view

JAGUAR : Architecural view

JAGUAR: for secure digital still camera (S²DC)

Watermarking Co-processor : for S²DC

Conclusions

- Fundamentals of digital watermarking
- A visible watermarking technique in detail
- Applications of visible watermarking
- Digital camera
- Signal processor
- Modifying Co-processor for secure camera
- A visible Watermarking chip
- More watermarking chip designs possible

