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M aj or Motivation : Extending battery

life for portable applications
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Design Quality Measures

Area

Performance

Power
Testability(Observability/Controllability)
Verifiability

Reliability

Manufacturability
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Quality M easures Vs Objective Functions

« Quality measures are used to support design decisions

* In order to be acceptable the design must pass the
quality measure

e SO0 the designer has to take the quality measures Into
account In the form of objective functions during the
design process

Power
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Why Low-Power Synthesis ??

Battery lifetime Cooling and energy costs

system reliability
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What to reduce for low power ??

Battery life : Energy / PDP (power-delay-
product)

Battery life and Delay: Action (Energy-delay-
oroduct)

Reliability: Peak Power

Packaging and Cooling cost, Environment:
Average power
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L ow-power design: Key Principles

»using the lowest possible supply voltage

»using the smallest geometry, highest frequency devices,
but operating them at lowest possible frequency

»using paralelism and pipelining to lower required
frequency of operation

»power management by disconnecting the power source
when the system isidle

»designing systems to have lowest reguirements on
subsystem performance for the given user level functionality
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Why High-L evel L ow-Power
Synthesis ??

HWSW Co-des ign

= 70 % Custom IBA
Algorithm Deskgn
Commun cation Synthesis

Behavioral 40-70 % Scheduling, Binding
Pipelning
Behavioral Transform atons

RT-Level 25-40% Clock Gating, Precomputation
Operand lsolation
bhaie Assgnment, Retming

Lo ic Restructhuring
Tecnology Mapping . Rewiring
Pmn Ordering & Phase Assigrmmment

Fanout Optim zation, Buffering
Transistor szng, Placement
Partitioning ., Clock Tree Desikgn
Glitch Elmination

P hysical
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Sour ces of Power Dissipation (CMOS)

Powel Ermi patich
Static Dynamc
Leakage Sta|n::1|:| ¥ Shn:nrt|-|:i it Capacitive Switching
Diode Leakage Subtheshold ':1|.]IIEL'IT. Leakage

Major component: Dynamic Power
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Power Dissipation .......

Leakage Current: This Is determined by the fabrication
technology and consists of reverse bias current in the parasitic
diodes and sub-threshold current that arises from the inversion
charges that exists a the gate voltages below the threshold
voltage.

Standby Current: It is the DC current drawn continuously from
V44 toground.

Short-Circuit Current: This is the current due to the DC path
between the supply and ground during output transition.

Capacitance Current: This flows to charge and discharge
capacitance loads during logic changes.
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Dynamic Power: Major one

1 2
:E—_I.}- halcnic .-E C L.v-:l-:l. Nt

C. =load capacitor, V, = supply voltage,

N = average number of transitions/clock cycle
= E(sw) = 2 a,_., = switching activity

f = clock frequency

Note:

1. N * f Istransition density

2. C.«N (= C,, = Cgy) Is the effective switching
capacitance
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Dynamic Power (How to reduce ?77?)
P = -C WV, NT

dwhainc

-Reduce Supply Voltage (V)

-Reduce Clock Frequency ()

-Reduce Switching Activity ( N/ E(sw) )
-Reduce Capacitance ( C, )

Note : we can’t reduce all parameters @
WHY ?77?
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ReduceV y,, f, N, C

Reduce Supply Voltage ( V44 ) : delay increases ; performance
degradation

Reduce Clock Freguency ( f) : only power saving no energy

Reduce Switching Activity ( N / E(sw) ) : no switching no
power loss !!! Not in fully under designers control. Switching
activity depends on the logic function. Temporal/and spatial
correlations difficult to handle.

Reduce Physical Capacitance . done by reducing device size
reduces the current drive of the transistor making the circuit
slow

Reduce C,/C,, : adversely affects the maximum clock
frequency
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Power/Ener gy Dissipation: more details
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A general CMOS transistor circuit
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Energy Dissipation: Detalls .......

T T Via
1 :Ef PH)dt =V, { i Odt= f C AV, =CV,_

Vad
Eout=J Pou (t}dt:ﬁf Voutdout () dt_f CrVout Yot =3 CLVdd
0

Note:
1. the difference between the two isthe loss
2. Energy doesn’t depend on frequency
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Energy to Power
For N, clock cyclesenergy loss:
Ene = CL Vaa® N(NY)
N(N,) : isthe number of 0->1 transitionsin N, clock cycles

im | E l (N .2
_ lim Nel| g | 1IN Kk
meg_ N—inf] N £= N— inf N': qud £

2
= D:l}-::rl CLVd 1 f

Note: Power depends on frequency
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Propagation Delay Vs Frequency

Assuming clock cycle time (T) is proportional to
circuit delay (t,) :

Approximately : T a V

For frequency (U/T) : f,, o LV
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Effectsof Voltage Change

1.0 2.0 3.0 30 5.0

Vpop (in V)

6.

Energy (Power for constant frequency), Delay Vs Voltage

University of
South Florida

20



How much we save ?? Varying V 44/ f

Voltage (V44 | Frequency (f) | Power (Py) | Energy (Ey)
Vdd 1:max I:)d Ed
V! 2 fom P,/ 4 E,/ 4
V4! 2 fo! 2 P,/ 8 E,/ 4
V 4 fo! 2 P,/ 2 E,

* Note: ., Vsf
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| EEE Computer magazine: April 2000, page-56

“It IS not necessary for a processor to run
constantly at maximum  frequency to
accomplish 1its work. If we know a
computation’s deadline, we can adjust the
processor’s frequency and reduce the supply
voltage. For example, a simple MPEG decode
runs at a fixed rate determined by every 1/30%
of a second. Therefore, we can adjust the
processor to run so that it doesn’t finish its
work ahead of schedule and waste power.”
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Varying Freguency with Voltage:
A Good |dea

T.D. Burd and RW Brodersen, “Energy efficient CMOS microprocessor
design”, Proceedings of the 28" Hawaii International Conference on System
Sciences, 1995, pp. 288 —297.

“Scaling the clock frequency is a third approach which
IS most beneficial If it coupled with voltage scaling. If
the clock frequency Is reduced, the delay may be
Increased (keeping iIs equal to 1/f; ) by reducing the
supply voltage and thus saving power. If the voltage Is
kept constant, then power and throughput reduce linearly
with clock frequency.”
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A dynamic voltage scaled
MICr Opr 0Ccessor-system

T.D. Burd, T.A.Pering, A.J. Stratakos, R.W.Brodersen, “A Dynamic Voltage
Scaled Microprocessor System”, IEEE Journal of Solid Sate Circuits,
Volume: 35 Issue: 11, Nov. 2000, Page(s): 1571 —-1580.

Supply Voltage and clock frequency are dynamically varied :
system delivers high throughput when required while saves
energy(extends battery life) during low speed periods

The microprocessor operates from 1.2-3.8V and 5-80MHz with
0.54mW/MIPS minimum energy consumption

Operating System need to have a voltage scheduler that controls
fox and Vg by writing a desired frequency (MHz) to a
COProcessor register
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dynamic voltage scaled system ...
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System Architecture: Four Custom Chips
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dynamic voltage scaled system ......

Conventional Benchmarks like SPEC, MIPS etc. are not useful
since they are constructed to measure the peak throughput of
the processor. New benchmarks selected which combine
computational reguirements with realistic latency constraints.

**AUDIO Decryption
“*MPEG Decoding
*User Interfaces
s»Java Interpreter
“*Web Browser

“»»Graphics Primitive Rendering
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Speed-Setting of a L ow-Power CPU

K.Govil, E.Chan, H. Wasserman, “Comparing Algorithms for Dynamic
Speed-Setting of a Low-Power CPU”, Proc. Of the 1% Annual Intl. Conf. On

Mobile Computing and Networking, 1995.

A CPU is regarded as a capacitor-based system that
satisfies the physical laws:
energy/sec a voltage? * speed
or  energy/task a voltage?
If voltage is reduced directly proportiona speed, then
energy/task a speed?

Conclusion: CPU capable of dynamic speed setting can
save energy Isvoltage is reduced accordingly
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Energy-Speed trade-off

T.A.Pering ,T.D. Burd,, R.W.Brodersen, “Voltage Scheduling in the IpARM
Microprocessor System”, Proceedings of the International Symposium on

Low Power Electronics and Design, 2000, ISLPED’00, pp. 96-10
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Speed
Energy/Speed Trade-Off
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Multiple Operating Voltage Energy
Reduction: (MOVER)

M.C.Johnson and K.Roy, "Datapath Scheduling with Multiple Supply Voltages
and Level Converters', Proc. of IEEE Intl. Symposium on Circuits and
Systems, 1997, ISCAS 97, Vol. 3, Hong Kong, pp. 2152 —-2155.

Energy Savings.
two supply voltage : 0-50%
three supply voltage : 0-65%
Area Penalty: 0-170%

Coreof MOVER: ILP
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MOVER (How It works ??).........

0 MOVER find the minimum and maximum bound on the
time window In which operation must execute

0 The DFG is partitioned into two groups (2 supply):
. Higher voltage operation groups
. Lower voltage operation groups
- MOVER 1% fixes the minimum voltage of the lower group and
then fixes the minimum voltage for the upper group

0 The decision variable x;, ;= 1 indicates that operation |
begins on clock cyclel usl ng supply voltage s.

2 Objective Functions : Energy and Area
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@ Adder @ NO-OP

2'sComplement .. Data Flow
o [1]  [Min. Latency Clock Cycles]

Multiplier  ........... Maximum Laten
X T ofl Sample Perio

Datapath Specification and key notations
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Clock Cycle Resources (1 adder, 2 multipliers )

o o

4V | | IV

_I_
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4V
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Schedule with variable voltage
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Drawbacks of MOVER

- Do not address conditional branches

. Do not consider functional pipelining

- Energy model used is data-intensive

- Exponential worst-case complexity and can't
handle large datapaths

- |LP (Integer Linear Programming) is difficult to
solve
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Variable Voltage: Effectson Circuit Design

|f Multiple supplies are generated off-chip then additional power
and ground pins will be required.

|t may be necessary to partition the chip into separate regions,
where all modules in a region operate at the same voltage.

*Some kind of isolation will be required between regions operated
at different voltages.

*There may be some limit on the voltage difference that can be
tolerated between the regions.

*Protection against latch-up may be needed at the logic interfaces
between regions If different voltages.

*New design rules for routing may be needed to deal with signals at
one voltage passing through a region at another voltage.
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Conclusions

Sources of power dissipation

Dynamic power dissipation details
How to reduce dynamic power ?
Effect of Frequency on Energy / Power
Few low-power research works
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