
1

HighHigh--Level SynthesisLevel Synthesis

Saraju P. Mohanty
smohanty@csee.usf.edu

Dept. of CSE, USF, Tampa, FL

2

Aim of this presentationAim of this presentation

1. To discuss Design Automation terminology
2. To know Data Flow Graph (DFG) / Control Flow

Graph details (CFG)
3. To learn High-Level Synthesis (HLS) with the help

of a small example
4. To discuss Integer Linear Programming (ILP) based

scheduling in details
5. To get feedback from you

Feel free to interrupt me !!!

3

Taxonomy of Design AutomationTaxonomy of Design Automation

Note: Functional Block Level is RT Level

4

Taxonomy …. ….Taxonomy …. ….

Concentric Circle: Levels of Abstraction

Axes: Domains of Description

Behavioral Domain: what the design is
supposed to do ??

Structural Domain: one-to-one mapping of a
behavioral representation to a set of components

Physical Domain: bind the structure to silicon

5

Taxonomy:Taxonomy: BehavioralBehavioral Vs Vs StructuralStructural

Entity XOR2 is
Port(A, B: in bit; Z: out bit);
End XOR2;

-- This is Structural

Architecture DATAFLOW of XOR2 is
Begin

Z <= A XOR B;
end DATAFLOW

6

BehavioralBehavioral Vs Vs StructuralStructural ……..……..

-- This is Behavioral
Architecture ALGORITHM of XOR2 is
Begin

Process(A, B)
begin

if A = B then
Z <= ‘0’;

else
Z <= ‘1’;

end if;
end process

End ALGORITHM

7

Transition between domainsTransition between domains

8

What is HighWhat is High--Level Synthesis (HLS) ??Level Synthesis (HLS) ??

The high-level synthesis process is defined
as a translation process from behavioural
description to a structural description.

[Analogous to "compiler" that translates
high-level language like C/Pascal to
assembly language.]

Note: It is along the arc in Y-chart

9

Yet another definition of Yet another definition of
HighHigh--Level Synthesis……Level Synthesis……

McFarland (1990): (widely followed !!!)

“HLS is conversion or translation from an
algorithmic level specification of the
behavior of a digital system to a RT level
structure that implements that behavior.”

Note / It is along the axis in Y-chart

10

Why HighWhy High--Level Synthesis ?Level Synthesis ?

• Shorter design cycle

• Fewer errors

• The ability to search the design space

• Documenting the design process

• Availability of IC technology to more

people

11

HighHigh--Level Synthesis(HLS) ProcessLevel Synthesis(HLS) Process

12

HLS Process …. …..HLS Process …. …..

Compilation: Compile from VHDL to
DFG/CFG (can be thought of as non-
optimized compilation of programming
language !!!)

Transformation: Initial CDFG is transformed
so that the resultant CDFG is more suitable for
following phases (similar to compiler
optimization like dead code elimination !!!)

13

HLS Process: HLS Process: Compilation Compilation

Compilation: Behavioral VHDL to structural
VHDL and then draw the DFG

Note: CDFG more details coming soon………

14

HLS Process: HLS Process: TransformationTransformation

15

HLS Process: HLS Process: (Scheduling/Allocation)(Scheduling/Allocation)

Scheduling: partitions (with respect to: time)
variables and operations in the DFG so that the
operations in the same group can be executed
concurrently.

Allocation: partitions with respect to hardware
resources (functional units and memory units)

Binding/Assignment: assignment of operations to
functional units and variables to memory units

16

Behavioral Synthesis (HLS) : Behavioral Synthesis (HLS) :
A small exampleA small example

Step1: Compilation and Transformation

17

HLS : Example ……HLS : Example ……

Step2: Scheduling (time/resource constraints)

18

HLS : Example ……HLS : Example ……

Step3: Allocation (fixes: amount and types of resources)

19

HLS : Example ……HLS : Example ……

Step4: Binding (which resource will be used by which operation)

20

HLS : Example ……HLS : Example ……

Step5: Connection Allocation (communication between resources;
bus,buffer/MUX)

21

HLS : Example ……HLS : Example ……

Step6: Architecture Generation (Datapath and Control)

Datapath

Control

CT1- Action: A = X +Y
Signals : Sel_A, Sel_B, load(Reg_A)

CT2- Action: B = E –F
Signals : Sel_A, Sel_B, load(Reg_B)

CT3- Action: Z = A * B
Signals : load(Reg_z)

22

ControlControl//DataData Flow Graph (Formal Flow Graph (Formal
Definition)Definition)

DFG: Graph G = (V, E), where:

i. V = {v1,v2…., vn} is a finite set whose elements are nodes, and

ii. E ⊂ V x V is an asymmetric data flow relation, whose
elements are directed data edges.

CFG: Graph G = (V, E), where:

i. V = {v1,v2…., vn } is a finite set whose elements are nodes, and

ii. E ⊂ V x V is a control flow relation, whose elements are
directed sequence edges.

23

Control/Data Flow Graph (CDFG)Control/Data Flow Graph (CDFG)

Example (Sqrt Calculations):

Y := 0.22 + 0.89 * X;

I := 0;

DO UNTIL I > 3 LOOP

Y := 0.5 * (Y + X/Y);

I := I + 1;

END DO

24

DFG (DFG (sqrtsqrt example)example)

25

CFG (CFG (sqrtsqrt example)example)

26

Scheduling AlgorithmsScheduling Algorithms

1. As-Soon-As-Possible (ASAP)

2. As-Late-As-Possible (ALAP)

3. Time Constrained Scheduling (such as: ILP, Force-
directed heuristic method, Iterative refinement method)

4. Resource Constrained Scheduling (such as:
Resource-based scheduling method, Static-list scheduling
method

5. Other Algorithms (like simulated annealing)

27

Scheduling Algorithms ……Scheduling Algorithms ……
(HAL Benchmark: Description)(HAL Benchmark: Description)

while (x < a) do
x1 := x + dx;
u1 := u – (3 * x * u * dx);
y1 := y + (u * dx);
x := x1;
u := u1;
y := y1;

end while

28

Scheduling Algorithms ……Scheduling Algorithms ……
(HAL Benchmark: DFG)(HAL Benchmark: DFG)

29

Scheduling Algorithms ……..Scheduling Algorithms ……..
((ASAPASAP Schedule)Schedule)

30

Scheduling Algorithms ……..Scheduling Algorithms ……..
((ALAPALAP Schedule)Schedule)

31

Scheduling …….Scheduling …….
(ILP Method: (ILP Method: mobilitymobility))

32

Scheduling …….Scheduling …….
(ILP Method: (ILP Method: formulationformulation))

minimize total cost = Cm*Nm + Ca*Na + Cs*Ns + Cc * Nc

Cm = cost of a multiplier, Ca = cost of an adder,
Cs = cost of a subtracter, Cc = cost of a comparator
Nm = number of multipliers, Na = number of adders
Ns = num. of subtracters, Nc = num of comparators

subject to:
(1) Operation oi in state sj (ΣEi≤j ≤Li

xi,j= 1)
x1,1 = 1, x2,1 = 1, x3,1 + x3,2 = 1 ………
total 11 constraints for 11 operation (see mobility fig)

33

Scheduling …….Scheduling …….
(ILP Method: (ILP Method: formulationformulation)…….)…….

subject to: ………
(2) No control step contains more than Ntk

operations of
type tk : Σi ∈ INDEXtk

xi,j ≤ Ntk,

x1,1 + x2,1 + x3,1 + x4,1 ≤ Nm (multipliers in state 1) …..
total 12 constraints (for each state sum of the same
type)

(3) For an operation oj all predecessors should be
scheduled in an earlier control step (if xi,k = xj,l then
k < l): 1x3,1 + 2 x3,2 – 2 x6,2 – 3 x6,3 ≤ -1 ….
total 3 constraints.

34

Scheduling …….Scheduling …….
(ILP Method: (ILP Method: solutionsolution))

Assuming :
Cm = 2, Ca = Cs = Cc = 1

The cost function is minimized and all inequalities are
satisfied when the values for the variables are :
Nm = 2, Na = Ns = Nc = 1
x1,1 = x2,1 = x3,2 = x4,3 = x5,2 = x6,3 = x7,3 = x8,4 = x9,4 =
x10,2 = x11,4 = 1 and rest all xi,j = 0.

35

Scheduling …….Scheduling …….
(ILP Method: (ILP Method: scheduleschedule))

36

ConclusionsConclusions

1. We discussed Design Automation
terminology

2. DFG/CFG details

3. We learnt HLS with the help of a small
example

4. We discussed ILP based scheduling

THANK YOUTHANK YOU

